{"title":"展望未来:纳米细胞为眼部给药带来革命性变化。","authors":"Chetna Modi, Varsha Gadhvi, Bhupendra G Prajapati","doi":"10.2174/0122117385286925240221111601","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the complexities of the eye's anatomy and physiology, achieving targeted drug delivery with minimal harm to healthy eye tissues has proven to be difficult. The focus of the review is on the potential of lipid and polymer micelle-based drug delivery systems, specifically nanomicelles, to overcome these challenges and improve the absorption of insoluble drugs. Nanomicelles offer several advantages, such as enhanced drug release kinetics, increased drug incorporation, and improved formulation of hydrophobic medicines. The review provides insights into various excipients, preparation methods, and evaluation techniques used in nanomicellar-based drug delivery systems. Furthermore, the review highlights current research and patents related to nanomicelles in ocular drug delivery, suggesting growing interest and potential for future developments in this field. Nanomicelles present a promising approach that may revolutionize ocular drug delivery and open new possibilities for treating various ocular diseases while minimizing adverse effects on healthy eye tissues.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Envisioning the Future: Nanomicelles Revolutionizing Ocular Drug Delivery.\",\"authors\":\"Chetna Modi, Varsha Gadhvi, Bhupendra G Prajapati\",\"doi\":\"10.2174/0122117385286925240221111601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the complexities of the eye's anatomy and physiology, achieving targeted drug delivery with minimal harm to healthy eye tissues has proven to be difficult. The focus of the review is on the potential of lipid and polymer micelle-based drug delivery systems, specifically nanomicelles, to overcome these challenges and improve the absorption of insoluble drugs. Nanomicelles offer several advantages, such as enhanced drug release kinetics, increased drug incorporation, and improved formulation of hydrophobic medicines. The review provides insights into various excipients, preparation methods, and evaluation techniques used in nanomicellar-based drug delivery systems. Furthermore, the review highlights current research and patents related to nanomicelles in ocular drug delivery, suggesting growing interest and potential for future developments in this field. Nanomicelles present a promising approach that may revolutionize ocular drug delivery and open new possibilities for treating various ocular diseases while minimizing adverse effects on healthy eye tissues.</p>\",\"PeriodicalId\":19774,\"journal\":{\"name\":\"Pharmaceutical nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0122117385286925240221111601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385286925240221111601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Envisioning the Future: Nanomicelles Revolutionizing Ocular Drug Delivery.
Due to the complexities of the eye's anatomy and physiology, achieving targeted drug delivery with minimal harm to healthy eye tissues has proven to be difficult. The focus of the review is on the potential of lipid and polymer micelle-based drug delivery systems, specifically nanomicelles, to overcome these challenges and improve the absorption of insoluble drugs. Nanomicelles offer several advantages, such as enhanced drug release kinetics, increased drug incorporation, and improved formulation of hydrophobic medicines. The review provides insights into various excipients, preparation methods, and evaluation techniques used in nanomicellar-based drug delivery systems. Furthermore, the review highlights current research and patents related to nanomicelles in ocular drug delivery, suggesting growing interest and potential for future developments in this field. Nanomicelles present a promising approach that may revolutionize ocular drug delivery and open new possibilities for treating various ocular diseases while minimizing adverse effects on healthy eye tissues.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.