Ghadah Alrehaili, Jennifer Kemppainen, Sanjay Kalra, Filippo Pinto E Vairo, Teng Moua, Eunhee S Yi, Alejandro Ferrer, Mrinal M Patnaik, Eva M Carmona
{"title":"胸膜后胸膜纤维细胞增生症的基因检测超越了成像和组织学评估。","authors":"Ghadah Alrehaili, Jennifer Kemppainen, Sanjay Kalra, Filippo Pinto E Vairo, Teng Moua, Eunhee S Yi, Alejandro Ferrer, Mrinal M Patnaik, Eva M Carmona","doi":"10.1007/s00408-024-00685-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lung biopsy remains the gold standard in the diagnosis of fibrotic interstitial lung disease (F-ILD), but there is a growing appreciation of the role of pathogenic gene variants in telomere and surfactant protein genes, especially in familial pulmonary fibrosis (FPF). Pleuroparenchymal fibroelastosis (PPFE) is a rare disease that can coexist with different patterns of F-ILD, including FPF. It can be progressive and often leads to respiratory failure and death. This study tested the hypothesis that genetic testing goes beyond radiological and histological findings in PPFE and other F-ILD further informing clinical decision-making for patients and affected family members by identifying pathological gene variants in telomere and surfactant protein genes.</p><p><strong>Methods: </strong>This is a retrospective review of 70 patients with F-ILD in the setting of FPF or premature lung fibrosis. Six out of 70 patients were diagnosed with PPFE based on radiological or histological characteristics. All patients underwent telomere length evaluation in peripheral blood by Flow-FISH or genetic testing using a customized exome-based panel that included telomere and surfactant protein genes associated with lung fibrosis.</p><p><strong>Results: </strong>Herein, we identified six individuals where radiographic or histopathological analyses of PPFE were linked with telomere biology disorders (TBD) or variants in surfactant protein genes. Each case involved individuals with either personal early-onset lung fibrosis or a family history of the disease. Assessments of telomere length and genetic testing offered insights beyond traditional radiological and histopathological evaluations.</p><p><strong>Conclusion: </strong>Detecting anomalies in TBD-related or surfactant protein genes can significantly refine the diagnosis and treatment strategies for individuals with PPFE and other F-ILD.</p>","PeriodicalId":18163,"journal":{"name":"Lung","volume":" ","pages":"151-156"},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009725/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic Testing Goes Beyond Imaging and Histological Evaluation in Pleuroparenchymal Fibroelastosis.\",\"authors\":\"Ghadah Alrehaili, Jennifer Kemppainen, Sanjay Kalra, Filippo Pinto E Vairo, Teng Moua, Eunhee S Yi, Alejandro Ferrer, Mrinal M Patnaik, Eva M Carmona\",\"doi\":\"10.1007/s00408-024-00685-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Lung biopsy remains the gold standard in the diagnosis of fibrotic interstitial lung disease (F-ILD), but there is a growing appreciation of the role of pathogenic gene variants in telomere and surfactant protein genes, especially in familial pulmonary fibrosis (FPF). Pleuroparenchymal fibroelastosis (PPFE) is a rare disease that can coexist with different patterns of F-ILD, including FPF. It can be progressive and often leads to respiratory failure and death. This study tested the hypothesis that genetic testing goes beyond radiological and histological findings in PPFE and other F-ILD further informing clinical decision-making for patients and affected family members by identifying pathological gene variants in telomere and surfactant protein genes.</p><p><strong>Methods: </strong>This is a retrospective review of 70 patients with F-ILD in the setting of FPF or premature lung fibrosis. Six out of 70 patients were diagnosed with PPFE based on radiological or histological characteristics. All patients underwent telomere length evaluation in peripheral blood by Flow-FISH or genetic testing using a customized exome-based panel that included telomere and surfactant protein genes associated with lung fibrosis.</p><p><strong>Results: </strong>Herein, we identified six individuals where radiographic or histopathological analyses of PPFE were linked with telomere biology disorders (TBD) or variants in surfactant protein genes. Each case involved individuals with either personal early-onset lung fibrosis or a family history of the disease. Assessments of telomere length and genetic testing offered insights beyond traditional radiological and histopathological evaluations.</p><p><strong>Conclusion: </strong>Detecting anomalies in TBD-related or surfactant protein genes can significantly refine the diagnosis and treatment strategies for individuals with PPFE and other F-ILD.</p>\",\"PeriodicalId\":18163,\"journal\":{\"name\":\"Lung\",\"volume\":\" \",\"pages\":\"151-156\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009725/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lung\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00408-024-00685-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lung","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00408-024-00685-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Genetic Testing Goes Beyond Imaging and Histological Evaluation in Pleuroparenchymal Fibroelastosis.
Background: Lung biopsy remains the gold standard in the diagnosis of fibrotic interstitial lung disease (F-ILD), but there is a growing appreciation of the role of pathogenic gene variants in telomere and surfactant protein genes, especially in familial pulmonary fibrosis (FPF). Pleuroparenchymal fibroelastosis (PPFE) is a rare disease that can coexist with different patterns of F-ILD, including FPF. It can be progressive and often leads to respiratory failure and death. This study tested the hypothesis that genetic testing goes beyond radiological and histological findings in PPFE and other F-ILD further informing clinical decision-making for patients and affected family members by identifying pathological gene variants in telomere and surfactant protein genes.
Methods: This is a retrospective review of 70 patients with F-ILD in the setting of FPF or premature lung fibrosis. Six out of 70 patients were diagnosed with PPFE based on radiological or histological characteristics. All patients underwent telomere length evaluation in peripheral blood by Flow-FISH or genetic testing using a customized exome-based panel that included telomere and surfactant protein genes associated with lung fibrosis.
Results: Herein, we identified six individuals where radiographic or histopathological analyses of PPFE were linked with telomere biology disorders (TBD) or variants in surfactant protein genes. Each case involved individuals with either personal early-onset lung fibrosis or a family history of the disease. Assessments of telomere length and genetic testing offered insights beyond traditional radiological and histopathological evaluations.
Conclusion: Detecting anomalies in TBD-related or surfactant protein genes can significantly refine the diagnosis and treatment strategies for individuals with PPFE and other F-ILD.
期刊介绍:
Lung publishes original articles, reviews and editorials on all aspects of the healthy and diseased lungs, of the airways, and of breathing. Epidemiological, clinical, pathophysiological, biochemical, and pharmacological studies fall within the scope of the journal. Case reports, short communications and technical notes can be accepted if they are of particular interest.