{"title":"短期饮食镁缺乏会下调大鼠骨形成相关基因的表达。","authors":"Shinichi Katsumata, Hiroshi Matsuzaki","doi":"10.1684/mrh.2023.0518","DOIUrl":null,"url":null,"abstract":"<p><p>Dietary magnesium deficiency increases osteoclastic bone resorption and decreases osteoblastic bone formation. Increased bone resorption due to dietary magnesium deficiency can be explained by increased expression of the receptor activator of nuclear factor kB ligand. However, the detailed mechanisms underlying decreased bone formation remain unclear. Thus, in the present study, to determine the mechanism underlying decreased bone formation induced by dietary magnesium deficiency, we investigated the effects of short-term dietary magnesium deficiency on the mRNA expression of genes related to bone formation in rats. Male Wistar rats were fed a control or magnesium-deficient diet for eight days. The mRNA expression level of Runx2, Sp7, Bglap, Alpl, Col1a1, Igf1, and Bmp2 in the femur was significantly lower in magnesium-deficient rats than in control rats. These results suggest that short-term dietary magnesium deficiency decreases the gene expression of insulin-like growth factor-1 and bone morphogenetic protein 2, which, in turn, decreases osteoblastic bone formation through the downregulation of osteoblastogenesis-related gene expression.</p>","PeriodicalId":18159,"journal":{"name":"Magnesium research","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term dietary magnesium deficiency downregulates the expression of bone formation-related genes in rats.\",\"authors\":\"Shinichi Katsumata, Hiroshi Matsuzaki\",\"doi\":\"10.1684/mrh.2023.0518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dietary magnesium deficiency increases osteoclastic bone resorption and decreases osteoblastic bone formation. Increased bone resorption due to dietary magnesium deficiency can be explained by increased expression of the receptor activator of nuclear factor kB ligand. However, the detailed mechanisms underlying decreased bone formation remain unclear. Thus, in the present study, to determine the mechanism underlying decreased bone formation induced by dietary magnesium deficiency, we investigated the effects of short-term dietary magnesium deficiency on the mRNA expression of genes related to bone formation in rats. Male Wistar rats were fed a control or magnesium-deficient diet for eight days. The mRNA expression level of Runx2, Sp7, Bglap, Alpl, Col1a1, Igf1, and Bmp2 in the femur was significantly lower in magnesium-deficient rats than in control rats. These results suggest that short-term dietary magnesium deficiency decreases the gene expression of insulin-like growth factor-1 and bone morphogenetic protein 2, which, in turn, decreases osteoblastic bone formation through the downregulation of osteoblastogenesis-related gene expression.</p>\",\"PeriodicalId\":18159,\"journal\":{\"name\":\"Magnesium research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnesium research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1684/mrh.2023.0518\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnesium research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1684/mrh.2023.0518","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Short-term dietary magnesium deficiency downregulates the expression of bone formation-related genes in rats.
Dietary magnesium deficiency increases osteoclastic bone resorption and decreases osteoblastic bone formation. Increased bone resorption due to dietary magnesium deficiency can be explained by increased expression of the receptor activator of nuclear factor kB ligand. However, the detailed mechanisms underlying decreased bone formation remain unclear. Thus, in the present study, to determine the mechanism underlying decreased bone formation induced by dietary magnesium deficiency, we investigated the effects of short-term dietary magnesium deficiency on the mRNA expression of genes related to bone formation in rats. Male Wistar rats were fed a control or magnesium-deficient diet for eight days. The mRNA expression level of Runx2, Sp7, Bglap, Alpl, Col1a1, Igf1, and Bmp2 in the femur was significantly lower in magnesium-deficient rats than in control rats. These results suggest that short-term dietary magnesium deficiency decreases the gene expression of insulin-like growth factor-1 and bone morphogenetic protein 2, which, in turn, decreases osteoblastic bone formation through the downregulation of osteoblastogenesis-related gene expression.
期刊介绍:
Magnesium Research, the official journal of the international Society for the Development of Research on Magnesium (SDRM), has been the benchmark journal on the use of magnesium in biomedicine for more than 30 years.
This quarterly publication provides regular updates on multinational and multidisciplinary research into magnesium, bringing together original experimental and clinical articles, correspondence, Letters to the Editor, comments on latest news, general features, summaries of relevant articles from other journals, and reports and statements from national and international conferences and symposiums.
Indexed in the leading medical databases, Magnesium Research is an essential journal for specialists and general practitioners, for basic and clinical researchers, for practising doctors and academics.