Patrick Veazie, Hsuan Chen, Kristin Hicks, Jake Holley, Nathan Eylands, Neil Mattson, Jennifer K. Boldt, Devin Brewer, Roberto Lopez, B. Whipker
{"title":"生成温室生菜叶片组织营养成分解释范围的数据驱动方法","authors":"Patrick Veazie, Hsuan Chen, Kristin Hicks, Jake Holley, Nathan Eylands, Neil Mattson, Jennifer K. Boldt, Devin Brewer, Roberto Lopez, B. Whipker","doi":"10.21273/hortsci17582-23","DOIUrl":null,"url":null,"abstract":"In the absence of controlled sufficiency studies, foliar interpretations for many horticultural crops are based on survey concentrations from small data sets. In addition, both survey and sufficiency ranges provide little interpretation regarding zones that are above or below the concentration range deemed “sufficient.” While providing a critical initial set of ranges, it was based on a limited set of data and therefore improvements in interpretation of data are needed. This study presents a novel method based on 1950 data points to create data-driven nutrient interpretation ranges by fitting models to provide more refined ranges of deficient (lowest 2.5%), low (2.5% to 25%), sufficient (25% to 75%), high (75% to 97.5%), and excessive (highest 2.5%). Data were analyzed by fitting Normal, Gamma, and Weibull distributions. Corresponding P values were calculated based on the Shapiro-Wilk test for normality for the Normal and Gamma distributions, and the Kolmogorov-Smirnov test was used for the Weibull distribution. The optimal distribution was selected based on the lowest Bayesian Information Criterion (BIC) value and visual fitness. The Weibull distribution best represented nitrogen, phosphorus, potassium, calcium, manganese, zinc, and copper, and the Gamma distribution best represented magnesium, sulfur, iron, and boron. Using the selected distributions, we propose a refined set of nutrient evaluation ranges for greenhouse-grown lettuce. These refined standards will aid growers and technical specialists in more accurately interpreting leaf tissue sample data.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" 1142","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Data-driven Approach for Generating Leaf Tissue Nutrient Interpretation Ranges for Greenhouse Lettuce\",\"authors\":\"Patrick Veazie, Hsuan Chen, Kristin Hicks, Jake Holley, Nathan Eylands, Neil Mattson, Jennifer K. Boldt, Devin Brewer, Roberto Lopez, B. Whipker\",\"doi\":\"10.21273/hortsci17582-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the absence of controlled sufficiency studies, foliar interpretations for many horticultural crops are based on survey concentrations from small data sets. In addition, both survey and sufficiency ranges provide little interpretation regarding zones that are above or below the concentration range deemed “sufficient.” While providing a critical initial set of ranges, it was based on a limited set of data and therefore improvements in interpretation of data are needed. This study presents a novel method based on 1950 data points to create data-driven nutrient interpretation ranges by fitting models to provide more refined ranges of deficient (lowest 2.5%), low (2.5% to 25%), sufficient (25% to 75%), high (75% to 97.5%), and excessive (highest 2.5%). Data were analyzed by fitting Normal, Gamma, and Weibull distributions. Corresponding P values were calculated based on the Shapiro-Wilk test for normality for the Normal and Gamma distributions, and the Kolmogorov-Smirnov test was used for the Weibull distribution. The optimal distribution was selected based on the lowest Bayesian Information Criterion (BIC) value and visual fitness. The Weibull distribution best represented nitrogen, phosphorus, potassium, calcium, manganese, zinc, and copper, and the Gamma distribution best represented magnesium, sulfur, iron, and boron. Using the selected distributions, we propose a refined set of nutrient evaluation ranges for greenhouse-grown lettuce. These refined standards will aid growers and technical specialists in more accurately interpreting leaf tissue sample data.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\" 1142\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.21273/hortsci17582-23\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/hortsci17582-23","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Data-driven Approach for Generating Leaf Tissue Nutrient Interpretation Ranges for Greenhouse Lettuce
In the absence of controlled sufficiency studies, foliar interpretations for many horticultural crops are based on survey concentrations from small data sets. In addition, both survey and sufficiency ranges provide little interpretation regarding zones that are above or below the concentration range deemed “sufficient.” While providing a critical initial set of ranges, it was based on a limited set of data and therefore improvements in interpretation of data are needed. This study presents a novel method based on 1950 data points to create data-driven nutrient interpretation ranges by fitting models to provide more refined ranges of deficient (lowest 2.5%), low (2.5% to 25%), sufficient (25% to 75%), high (75% to 97.5%), and excessive (highest 2.5%). Data were analyzed by fitting Normal, Gamma, and Weibull distributions. Corresponding P values were calculated based on the Shapiro-Wilk test for normality for the Normal and Gamma distributions, and the Kolmogorov-Smirnov test was used for the Weibull distribution. The optimal distribution was selected based on the lowest Bayesian Information Criterion (BIC) value and visual fitness. The Weibull distribution best represented nitrogen, phosphorus, potassium, calcium, manganese, zinc, and copper, and the Gamma distribution best represented magnesium, sulfur, iron, and boron. Using the selected distributions, we propose a refined set of nutrient evaluation ranges for greenhouse-grown lettuce. These refined standards will aid growers and technical specialists in more accurately interpreting leaf tissue sample data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.