考虑目标船只不确定性的沿海水域避碰决策研究

IF 3.9 4区 工程技术 Q1 ENGINEERING, MARINE
Brodogradnja Pub Date : 2024-03-01 DOI:10.21278/brod75203
Jianjie Gao, Yuquan Zhang
{"title":"考虑目标船只不确定性的沿海水域避碰决策研究","authors":"Jianjie Gao, Yuquan Zhang","doi":"10.21278/brod75203","DOIUrl":null,"url":null,"abstract":"Ship collision avoidance has always been a concern and it is crucial for achieving safe navigation of ships at sea. There are many studies on ship collision avoidance in open water, but less attention on coastal waters considering the uncertainty of target ships due to the complexity of the environment and traffic flow. In this paper, collision avoidance decision-making research in coastal waters considering the uncertainty of target ships was proposed. Firstly, accurate ship trajectories are obtained by preprocessing the raw Automatic Identification System (AIS) data. Subsequently, the processed trajectories are clustered using the Ordering Points to Identify the Clustering Structure (OPTICS) algorithm and Hausdorff distance, acquiring a dataset for trajectory prediction of target ships. Then, a mixed Gaussian model is utilized to calculate the prior probability distribution of the prediction model, thus establishing a trajectory prediction model that considers the uncertainty of the target ship. Finally, ship maneuverability is simulated using the Mathematical Model Group (MMG) and Proportion Integration Differentiation (PID) models, and a collision avoidance decision-making model for ships is constructed. The proposed algorithm has been tested and verified in a case study. The results show that the approach effectively predicts the trajectory of the target ship and facilitates informed collision avoidance decision-making.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ship collision avoidance decision-making research in coastal waters considering uncertainty of target ships\",\"authors\":\"Jianjie Gao, Yuquan Zhang\",\"doi\":\"10.21278/brod75203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ship collision avoidance has always been a concern and it is crucial for achieving safe navigation of ships at sea. There are many studies on ship collision avoidance in open water, but less attention on coastal waters considering the uncertainty of target ships due to the complexity of the environment and traffic flow. In this paper, collision avoidance decision-making research in coastal waters considering the uncertainty of target ships was proposed. Firstly, accurate ship trajectories are obtained by preprocessing the raw Automatic Identification System (AIS) data. Subsequently, the processed trajectories are clustered using the Ordering Points to Identify the Clustering Structure (OPTICS) algorithm and Hausdorff distance, acquiring a dataset for trajectory prediction of target ships. Then, a mixed Gaussian model is utilized to calculate the prior probability distribution of the prediction model, thus establishing a trajectory prediction model that considers the uncertainty of the target ship. Finally, ship maneuverability is simulated using the Mathematical Model Group (MMG) and Proportion Integration Differentiation (PID) models, and a collision avoidance decision-making model for ships is constructed. The proposed algorithm has been tested and verified in a case study. The results show that the approach effectively predicts the trajectory of the target ship and facilitates informed collision avoidance decision-making.\",\"PeriodicalId\":55594,\"journal\":{\"name\":\"Brodogradnja\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brodogradnja\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod75203\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod75203","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

避免船舶碰撞一直是人们关注的问题,也是实现海上船舶安全航行的关键。关于开阔水域船舶避碰的研究很多,但由于环境和交通流的复杂性,考虑到目标船舶的不确定性,对近海水域的避碰研究关注较少。本文提出了考虑目标船舶不确定性的沿海水域避碰决策研究。首先,通过对原始自动识别系统(AIS)数据进行预处理,获得精确的船舶轨迹。随后,利用点排序识别聚类结构(OPTICS)算法和 Hausdorff 距离对处理后的轨迹进行聚类,获得目标船轨迹预测数据集。然后,利用混合高斯模型计算预测模型的先验概率分布,从而建立考虑目标舰船不确定性的轨迹预测模型。最后,利用数学模型组(MMG)和比例积分微分(PID)模型模拟舰船的机动性,并构建舰船避碰决策模型。所提出的算法已在案例研究中进行了测试和验证。结果表明,该方法能有效预测目标船的轨迹,有助于做出明智的避碰决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ship collision avoidance decision-making research in coastal waters considering uncertainty of target ships
Ship collision avoidance has always been a concern and it is crucial for achieving safe navigation of ships at sea. There are many studies on ship collision avoidance in open water, but less attention on coastal waters considering the uncertainty of target ships due to the complexity of the environment and traffic flow. In this paper, collision avoidance decision-making research in coastal waters considering the uncertainty of target ships was proposed. Firstly, accurate ship trajectories are obtained by preprocessing the raw Automatic Identification System (AIS) data. Subsequently, the processed trajectories are clustered using the Ordering Points to Identify the Clustering Structure (OPTICS) algorithm and Hausdorff distance, acquiring a dataset for trajectory prediction of target ships. Then, a mixed Gaussian model is utilized to calculate the prior probability distribution of the prediction model, thus establishing a trajectory prediction model that considers the uncertainty of the target ship. Finally, ship maneuverability is simulated using the Mathematical Model Group (MMG) and Proportion Integration Differentiation (PID) models, and a collision avoidance decision-making model for ships is constructed. The proposed algorithm has been tested and verified in a case study. The results show that the approach effectively predicts the trajectory of the target ship and facilitates informed collision avoidance decision-making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brodogradnja
Brodogradnja ENGINEERING, MARINE-
CiteScore
4.30
自引率
38.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信