{"title":"考虑目标船只不确定性的沿海水域避碰决策研究","authors":"Jianjie Gao, Yuquan Zhang","doi":"10.21278/brod75203","DOIUrl":null,"url":null,"abstract":"Ship collision avoidance has always been a concern and it is crucial for achieving safe navigation of ships at sea. There are many studies on ship collision avoidance in open water, but less attention on coastal waters considering the uncertainty of target ships due to the complexity of the environment and traffic flow. In this paper, collision avoidance decision-making research in coastal waters considering the uncertainty of target ships was proposed. Firstly, accurate ship trajectories are obtained by preprocessing the raw Automatic Identification System (AIS) data. Subsequently, the processed trajectories are clustered using the Ordering Points to Identify the Clustering Structure (OPTICS) algorithm and Hausdorff distance, acquiring a dataset for trajectory prediction of target ships. Then, a mixed Gaussian model is utilized to calculate the prior probability distribution of the prediction model, thus establishing a trajectory prediction model that considers the uncertainty of the target ship. Finally, ship maneuverability is simulated using the Mathematical Model Group (MMG) and Proportion Integration Differentiation (PID) models, and a collision avoidance decision-making model for ships is constructed. The proposed algorithm has been tested and verified in a case study. The results show that the approach effectively predicts the trajectory of the target ship and facilitates informed collision avoidance decision-making.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ship collision avoidance decision-making research in coastal waters considering uncertainty of target ships\",\"authors\":\"Jianjie Gao, Yuquan Zhang\",\"doi\":\"10.21278/brod75203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ship collision avoidance has always been a concern and it is crucial for achieving safe navigation of ships at sea. There are many studies on ship collision avoidance in open water, but less attention on coastal waters considering the uncertainty of target ships due to the complexity of the environment and traffic flow. In this paper, collision avoidance decision-making research in coastal waters considering the uncertainty of target ships was proposed. Firstly, accurate ship trajectories are obtained by preprocessing the raw Automatic Identification System (AIS) data. Subsequently, the processed trajectories are clustered using the Ordering Points to Identify the Clustering Structure (OPTICS) algorithm and Hausdorff distance, acquiring a dataset for trajectory prediction of target ships. Then, a mixed Gaussian model is utilized to calculate the prior probability distribution of the prediction model, thus establishing a trajectory prediction model that considers the uncertainty of the target ship. Finally, ship maneuverability is simulated using the Mathematical Model Group (MMG) and Proportion Integration Differentiation (PID) models, and a collision avoidance decision-making model for ships is constructed. The proposed algorithm has been tested and verified in a case study. The results show that the approach effectively predicts the trajectory of the target ship and facilitates informed collision avoidance decision-making.\",\"PeriodicalId\":55594,\"journal\":{\"name\":\"Brodogradnja\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brodogradnja\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod75203\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod75203","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Ship collision avoidance decision-making research in coastal waters considering uncertainty of target ships
Ship collision avoidance has always been a concern and it is crucial for achieving safe navigation of ships at sea. There are many studies on ship collision avoidance in open water, but less attention on coastal waters considering the uncertainty of target ships due to the complexity of the environment and traffic flow. In this paper, collision avoidance decision-making research in coastal waters considering the uncertainty of target ships was proposed. Firstly, accurate ship trajectories are obtained by preprocessing the raw Automatic Identification System (AIS) data. Subsequently, the processed trajectories are clustered using the Ordering Points to Identify the Clustering Structure (OPTICS) algorithm and Hausdorff distance, acquiring a dataset for trajectory prediction of target ships. Then, a mixed Gaussian model is utilized to calculate the prior probability distribution of the prediction model, thus establishing a trajectory prediction model that considers the uncertainty of the target ship. Finally, ship maneuverability is simulated using the Mathematical Model Group (MMG) and Proportion Integration Differentiation (PID) models, and a collision avoidance decision-making model for ships is constructed. The proposed algorithm has been tested and verified in a case study. The results show that the approach effectively predicts the trajectory of the target ship and facilitates informed collision avoidance decision-making.
期刊介绍:
The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.