Karthik Ravi Krishna Murthy, F. Akyel, U. Reisgen, S. Olschok, Dhamini Mahendran
{"title":"结合稀释测量研究和有限元模拟,建立低转变温度不锈钢激光束焊接过程中的相变模型","authors":"Karthik Ravi Krishna Murthy, F. Akyel, U. Reisgen, S. Olschok, Dhamini Mahendran","doi":"10.3390/jmmp8020050","DOIUrl":null,"url":null,"abstract":"In this study, the evolution of volume fractions during laser beam welding (LBW) of stainless steel, with a specific focus on incorporating the low transformation temperature (LTT) effect using the dilatometer, has been proposed. The LTT effect refers to the phase transformations that occur at lower temperatures and lead to the formation of a martensitic microstructure, which will significantly influence the residual stresses and distortion of the welded joints. In this research, the LTT conditions are achieved by varying the Cr and Ni content in the weld seam by varying the weld parameter, including laser power, welding speed and filler wire speed. The dilatometer analysis technique is employed to simulate the thermal conditions encountered during LBW. By subjecting the stainless steel samples to controlled heating and cooling cycles, the kinetics of the volume fractions can be measured using the lever rule and empirical method (KOP and Lee). The phase transformation simulation model is computed by integrating the thermal and metallurgical effects to predict the volume fractions in LBW joints and has been validated using dilatometer results. This provides valuable insight into the relationship between welding parameters and phase transformations in stainless steel with the LTT effect during laser beam welding. Using this relationship, the weld quality can be improved by reducing the residual stresses and distortion.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"121 40","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling the Evolution of Phases during Laser Beam Welding of Stainless Steel with Low Transformation Temperature Combining Dilatometry Study and FEM\",\"authors\":\"Karthik Ravi Krishna Murthy, F. Akyel, U. Reisgen, S. Olschok, Dhamini Mahendran\",\"doi\":\"10.3390/jmmp8020050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the evolution of volume fractions during laser beam welding (LBW) of stainless steel, with a specific focus on incorporating the low transformation temperature (LTT) effect using the dilatometer, has been proposed. The LTT effect refers to the phase transformations that occur at lower temperatures and lead to the formation of a martensitic microstructure, which will significantly influence the residual stresses and distortion of the welded joints. In this research, the LTT conditions are achieved by varying the Cr and Ni content in the weld seam by varying the weld parameter, including laser power, welding speed and filler wire speed. The dilatometer analysis technique is employed to simulate the thermal conditions encountered during LBW. By subjecting the stainless steel samples to controlled heating and cooling cycles, the kinetics of the volume fractions can be measured using the lever rule and empirical method (KOP and Lee). The phase transformation simulation model is computed by integrating the thermal and metallurgical effects to predict the volume fractions in LBW joints and has been validated using dilatometer results. This provides valuable insight into the relationship between welding parameters and phase transformations in stainless steel with the LTT effect during laser beam welding. Using this relationship, the weld quality can be improved by reducing the residual stresses and distortion.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"121 40\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jmmp8020050\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp8020050","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Modelling the Evolution of Phases during Laser Beam Welding of Stainless Steel with Low Transformation Temperature Combining Dilatometry Study and FEM
In this study, the evolution of volume fractions during laser beam welding (LBW) of stainless steel, with a specific focus on incorporating the low transformation temperature (LTT) effect using the dilatometer, has been proposed. The LTT effect refers to the phase transformations that occur at lower temperatures and lead to the formation of a martensitic microstructure, which will significantly influence the residual stresses and distortion of the welded joints. In this research, the LTT conditions are achieved by varying the Cr and Ni content in the weld seam by varying the weld parameter, including laser power, welding speed and filler wire speed. The dilatometer analysis technique is employed to simulate the thermal conditions encountered during LBW. By subjecting the stainless steel samples to controlled heating and cooling cycles, the kinetics of the volume fractions can be measured using the lever rule and empirical method (KOP and Lee). The phase transformation simulation model is computed by integrating the thermal and metallurgical effects to predict the volume fractions in LBW joints and has been validated using dilatometer results. This provides valuable insight into the relationship between welding parameters and phase transformations in stainless steel with the LTT effect during laser beam welding. Using this relationship, the weld quality can be improved by reducing the residual stresses and distortion.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico