原代人类牙髓细胞的分离和培养--最大限度提高可预测性和产量的技术和方法步骤说明

IF 2.3 Q3 BIOCHEMICAL RESEARCH METHODS
Michaela Kearney, David E McReynolds, H. Duncan
{"title":"原代人类牙髓细胞的分离和培养--最大限度提高可预测性和产量的技术和方法步骤说明","authors":"Michaela Kearney, David E McReynolds, H. Duncan","doi":"10.3390/mps7020022","DOIUrl":null,"url":null,"abstract":"The dental pulp has critical functions in tooth development as well as an ongoing role in promoting and maintaining the vitality of teeth. In particular, its regenerative ability allows dental tissues to be restored following damage caused by traumatic injury or caries. Regenerative endodontic procedures aim to utilise these processes to stimulate dental pulp repair in a minimally invasive manner and reduce the need for more invasive procedures such as root canal treatment. Dental pulp is a source of dental pulp cells (DPCs), which has a subpopulation of dental pulp stem cells (DPSCs), which are attractive for use in regenerative medicine due to their high proliferation rate, ability to differentiate into multiple cell types, and their preserved vitality following cryopreservation. The development of next-generation clinical therapeutics that maximise the potential of dental pulp relies on strong empirical evidence arising from in vitro experimentation. Here, we describe a modified method for the efficient isolation of primary human DPCs from sound third molar teeth for culture using an explant outgrowth method on basement membrane-coated flasks, as well as using high-resolution macro-photography to illustrate the methods. Critically, steps are taken to minimise potential physical and mechanical trauma to the cells and maximise yield. Human DPCs cultured using this method can be further expanded in cell culture flasks to facilitate their use in various in vitro experimental procedures.","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation and Culture of Primary Human Dental Pulp Cells—A Description of Technical and Methodological Steps to Maximise Predictability and Yield\",\"authors\":\"Michaela Kearney, David E McReynolds, H. Duncan\",\"doi\":\"10.3390/mps7020022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dental pulp has critical functions in tooth development as well as an ongoing role in promoting and maintaining the vitality of teeth. In particular, its regenerative ability allows dental tissues to be restored following damage caused by traumatic injury or caries. Regenerative endodontic procedures aim to utilise these processes to stimulate dental pulp repair in a minimally invasive manner and reduce the need for more invasive procedures such as root canal treatment. Dental pulp is a source of dental pulp cells (DPCs), which has a subpopulation of dental pulp stem cells (DPSCs), which are attractive for use in regenerative medicine due to their high proliferation rate, ability to differentiate into multiple cell types, and their preserved vitality following cryopreservation. The development of next-generation clinical therapeutics that maximise the potential of dental pulp relies on strong empirical evidence arising from in vitro experimentation. Here, we describe a modified method for the efficient isolation of primary human DPCs from sound third molar teeth for culture using an explant outgrowth method on basement membrane-coated flasks, as well as using high-resolution macro-photography to illustrate the methods. Critically, steps are taken to minimise potential physical and mechanical trauma to the cells and maximise yield. Human DPCs cultured using this method can be further expanded in cell culture flasks to facilitate their use in various in vitro experimental procedures.\",\"PeriodicalId\":18715,\"journal\":{\"name\":\"Methods and Protocols\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mps7020022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps7020022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

牙髓在牙齿发育过程中具有关键作用,并在促进和保持牙齿活力方面持续发挥作用。特别是,牙髓的再生能力可以使牙齿组织在受到外伤或龋齿损伤后得到修复。再生性牙髓治疗程序旨在利用这些过程,以微创方式刺激牙髓修复,减少对根管治疗等创伤性程序的需求。牙髓是牙髓细胞(DPCs)的来源,其中有一个牙髓干细胞(DPSCs)亚群,由于其增殖率高、能分化成多种细胞类型以及冷冻保存后仍能保持活力,因此在再生医学中具有吸引力。最大限度地发挥牙髓潜力的下一代临床疗法的开发依赖于体外实验所产生的强有力的经验证据。在此,我们介绍了一种改良方法,该方法采用基底膜包被烧瓶上的外植体生长法,从健全的第三磨牙中有效分离出原生人类 DPCs 进行培养,并使用高分辨率宏观照相术来说明该方法。关键是要采取措施,尽量减少对细胞可能造成的物理和机械创伤,并最大限度地提高产量。用这种方法培养出的人类 DPC 可在细胞培养瓶中进一步扩增,以便用于各种体外实验程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isolation and Culture of Primary Human Dental Pulp Cells—A Description of Technical and Methodological Steps to Maximise Predictability and Yield
The dental pulp has critical functions in tooth development as well as an ongoing role in promoting and maintaining the vitality of teeth. In particular, its regenerative ability allows dental tissues to be restored following damage caused by traumatic injury or caries. Regenerative endodontic procedures aim to utilise these processes to stimulate dental pulp repair in a minimally invasive manner and reduce the need for more invasive procedures such as root canal treatment. Dental pulp is a source of dental pulp cells (DPCs), which has a subpopulation of dental pulp stem cells (DPSCs), which are attractive for use in regenerative medicine due to their high proliferation rate, ability to differentiate into multiple cell types, and their preserved vitality following cryopreservation. The development of next-generation clinical therapeutics that maximise the potential of dental pulp relies on strong empirical evidence arising from in vitro experimentation. Here, we describe a modified method for the efficient isolation of primary human DPCs from sound third molar teeth for culture using an explant outgrowth method on basement membrane-coated flasks, as well as using high-resolution macro-photography to illustrate the methods. Critically, steps are taken to minimise potential physical and mechanical trauma to the cells and maximise yield. Human DPCs cultured using this method can be further expanded in cell culture flasks to facilitate their use in various in vitro experimental procedures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and Protocols
Methods and Protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
85
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信