{"title":"原代人类牙髓细胞的分离和培养--最大限度提高可预测性和产量的技术和方法步骤说明","authors":"Michaela Kearney, David E McReynolds, H. Duncan","doi":"10.3390/mps7020022","DOIUrl":null,"url":null,"abstract":"The dental pulp has critical functions in tooth development as well as an ongoing role in promoting and maintaining the vitality of teeth. In particular, its regenerative ability allows dental tissues to be restored following damage caused by traumatic injury or caries. Regenerative endodontic procedures aim to utilise these processes to stimulate dental pulp repair in a minimally invasive manner and reduce the need for more invasive procedures such as root canal treatment. Dental pulp is a source of dental pulp cells (DPCs), which has a subpopulation of dental pulp stem cells (DPSCs), which are attractive for use in regenerative medicine due to their high proliferation rate, ability to differentiate into multiple cell types, and their preserved vitality following cryopreservation. The development of next-generation clinical therapeutics that maximise the potential of dental pulp relies on strong empirical evidence arising from in vitro experimentation. Here, we describe a modified method for the efficient isolation of primary human DPCs from sound third molar teeth for culture using an explant outgrowth method on basement membrane-coated flasks, as well as using high-resolution macro-photography to illustrate the methods. Critically, steps are taken to minimise potential physical and mechanical trauma to the cells and maximise yield. Human DPCs cultured using this method can be further expanded in cell culture flasks to facilitate their use in various in vitro experimental procedures.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"94 3","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation and Culture of Primary Human Dental Pulp Cells—A Description of Technical and Methodological Steps to Maximise Predictability and Yield\",\"authors\":\"Michaela Kearney, David E McReynolds, H. Duncan\",\"doi\":\"10.3390/mps7020022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dental pulp has critical functions in tooth development as well as an ongoing role in promoting and maintaining the vitality of teeth. In particular, its regenerative ability allows dental tissues to be restored following damage caused by traumatic injury or caries. Regenerative endodontic procedures aim to utilise these processes to stimulate dental pulp repair in a minimally invasive manner and reduce the need for more invasive procedures such as root canal treatment. Dental pulp is a source of dental pulp cells (DPCs), which has a subpopulation of dental pulp stem cells (DPSCs), which are attractive for use in regenerative medicine due to their high proliferation rate, ability to differentiate into multiple cell types, and their preserved vitality following cryopreservation. The development of next-generation clinical therapeutics that maximise the potential of dental pulp relies on strong empirical evidence arising from in vitro experimentation. Here, we describe a modified method for the efficient isolation of primary human DPCs from sound third molar teeth for culture using an explant outgrowth method on basement membrane-coated flasks, as well as using high-resolution macro-photography to illustrate the methods. Critically, steps are taken to minimise potential physical and mechanical trauma to the cells and maximise yield. Human DPCs cultured using this method can be further expanded in cell culture flasks to facilitate their use in various in vitro experimental procedures.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"94 3\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mps7020022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps7020022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Isolation and Culture of Primary Human Dental Pulp Cells—A Description of Technical and Methodological Steps to Maximise Predictability and Yield
The dental pulp has critical functions in tooth development as well as an ongoing role in promoting and maintaining the vitality of teeth. In particular, its regenerative ability allows dental tissues to be restored following damage caused by traumatic injury or caries. Regenerative endodontic procedures aim to utilise these processes to stimulate dental pulp repair in a minimally invasive manner and reduce the need for more invasive procedures such as root canal treatment. Dental pulp is a source of dental pulp cells (DPCs), which has a subpopulation of dental pulp stem cells (DPSCs), which are attractive for use in regenerative medicine due to their high proliferation rate, ability to differentiate into multiple cell types, and their preserved vitality following cryopreservation. The development of next-generation clinical therapeutics that maximise the potential of dental pulp relies on strong empirical evidence arising from in vitro experimentation. Here, we describe a modified method for the efficient isolation of primary human DPCs from sound third molar teeth for culture using an explant outgrowth method on basement membrane-coated flasks, as well as using high-resolution macro-photography to illustrate the methods. Critically, steps are taken to minimise potential physical and mechanical trauma to the cells and maximise yield. Human DPCs cultured using this method can be further expanded in cell culture flasks to facilitate their use in various in vitro experimental procedures.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.