{"title":"用于电子设备冷却的创新型降噪鼓风机外壳设计","authors":"Mohammed Amer","doi":"10.1016/j.meaene.2024.100002","DOIUrl":null,"url":null,"abstract":"<div><p>Electronic devices are equipped with blower fans as a means of removing the heat that accumulates in them. This type of fan operates smartly by increasing the speed of the impeller as the electronic devices become overloaded. When the speed of the motor increases, it creates unwanted noise that may be harmful to the ears of the user. Therefore, it is imperative to reduce this noise while maintaining the same dimensions of the fans. The purpose of this work is to demonstrate how critical measurements can be used to improve the design of blower fan housings. By making a change in the housing of the fan, this study proposes an innovative solution to the noise problem associated with heat radiation fans. A punch has been added to the new housing of notebook system, which may be located on either the upper or lower sides. A punch should be located at the air inlet on the fan's air outlet side, between 0 and 90°. Moreover, a punch should have a height ranging from 0.3 to 1 mm and a circle size ranging from one eighth to one fourth. Additionally, the details of noise measurement are presented. The results of the study showed that the noise reduction was enhanced by more than 2 dB(A) which can either result in a performance enhancement by increasing the flow rate to reach the same flow rate as the original fan or in a decrease in human discomfort by lowering the noise level. The work has been patented under patent numbers TWM624190U, and CN216554487U.</p></div>","PeriodicalId":100897,"journal":{"name":"Measurement: Energy","volume":"1 1","pages":"Article 100002"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950345024000022/pdfft?md5=24c6fcd2489f1163bddaa30ac27e0d5f&pid=1-s2.0-S2950345024000022-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An innovative noise reduction blower fan housing design used in electronics cooling\",\"authors\":\"Mohammed Amer\",\"doi\":\"10.1016/j.meaene.2024.100002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electronic devices are equipped with blower fans as a means of removing the heat that accumulates in them. This type of fan operates smartly by increasing the speed of the impeller as the electronic devices become overloaded. When the speed of the motor increases, it creates unwanted noise that may be harmful to the ears of the user. Therefore, it is imperative to reduce this noise while maintaining the same dimensions of the fans. The purpose of this work is to demonstrate how critical measurements can be used to improve the design of blower fan housings. By making a change in the housing of the fan, this study proposes an innovative solution to the noise problem associated with heat radiation fans. A punch has been added to the new housing of notebook system, which may be located on either the upper or lower sides. A punch should be located at the air inlet on the fan's air outlet side, between 0 and 90°. Moreover, a punch should have a height ranging from 0.3 to 1 mm and a circle size ranging from one eighth to one fourth. Additionally, the details of noise measurement are presented. The results of the study showed that the noise reduction was enhanced by more than 2 dB(A) which can either result in a performance enhancement by increasing the flow rate to reach the same flow rate as the original fan or in a decrease in human discomfort by lowering the noise level. The work has been patented under patent numbers TWM624190U, and CN216554487U.</p></div>\",\"PeriodicalId\":100897,\"journal\":{\"name\":\"Measurement: Energy\",\"volume\":\"1 1\",\"pages\":\"Article 100002\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2950345024000022/pdfft?md5=24c6fcd2489f1163bddaa30ac27e0d5f&pid=1-s2.0-S2950345024000022-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement: Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950345024000022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement: Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950345024000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An innovative noise reduction blower fan housing design used in electronics cooling
Electronic devices are equipped with blower fans as a means of removing the heat that accumulates in them. This type of fan operates smartly by increasing the speed of the impeller as the electronic devices become overloaded. When the speed of the motor increases, it creates unwanted noise that may be harmful to the ears of the user. Therefore, it is imperative to reduce this noise while maintaining the same dimensions of the fans. The purpose of this work is to demonstrate how critical measurements can be used to improve the design of blower fan housings. By making a change in the housing of the fan, this study proposes an innovative solution to the noise problem associated with heat radiation fans. A punch has been added to the new housing of notebook system, which may be located on either the upper or lower sides. A punch should be located at the air inlet on the fan's air outlet side, between 0 and 90°. Moreover, a punch should have a height ranging from 0.3 to 1 mm and a circle size ranging from one eighth to one fourth. Additionally, the details of noise measurement are presented. The results of the study showed that the noise reduction was enhanced by more than 2 dB(A) which can either result in a performance enhancement by increasing the flow rate to reach the same flow rate as the original fan or in a decrease in human discomfort by lowering the noise level. The work has been patented under patent numbers TWM624190U, and CN216554487U.