不饱和脂肪酸、洛伦佐油和 N-琥珀酰亚胺油酸磺酯对 158 N 细胞和 ARPE-19 细胞由 7-酮胆固醇诱导的氧化应激、细胞器功能障碍和细胞死亡的依赖或独立细胞保护活性:N-琥珀酰亚胺油酸的细胞靶标和益处

IF 3.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Thomas Nury , Imen Ghzaiel , Aziz Hichami , Claudio Caccia , Valerio Leoni , Vivien Pires , Atanas G Atanasov , Amira Zarrouk , Gérard Lizard , Anne Vejux
{"title":"不饱和脂肪酸、洛伦佐油和 N-琥珀酰亚胺油酸磺酯对 158 N 细胞和 ARPE-19 细胞由 7-酮胆固醇诱导的氧化应激、细胞器功能障碍和细胞死亡的依赖或独立细胞保护活性:N-琥珀酰亚胺油酸的细胞靶标和益处","authors":"Thomas Nury ,&nbsp;Imen Ghzaiel ,&nbsp;Aziz Hichami ,&nbsp;Claudio Caccia ,&nbsp;Valerio Leoni ,&nbsp;Vivien Pires ,&nbsp;Atanas G Atanasov ,&nbsp;Amira Zarrouk ,&nbsp;Gérard Lizard ,&nbsp;Anne Vejux","doi":"10.1016/j.crbiot.2024.100195","DOIUrl":null,"url":null,"abstract":"<div><p>7-ketocholesterol is a cytotoxic oxysterol which is frequently increased in many chronic inflammatory and age-related diseases. Thus, the inhibition of the toxicity of 7-ketocholesterol is a major challenge to treat these diseases. 158N oligodendrocytes were used to evaluate the cytoprotective effects of lipids: ω-3 and ω-9 fatty acids (α-linolenic acid (C18:3n-3), eicosapentaenoic acid (C20:5n-3), docosahexaenoic acid (C22:6n-3), erucic acid (C22:1n-9) and oleic acid (C18:1n-9)), Lorenzo's oil (a mixture of oleic and erucic acid, 4:1) and sulfo-N-succinimidyl oleate (SSO, a synthetic derivative of oleic acid). On 158N cells, the ability of these molecules to inhibit 7KC-induced oxiapoptophagy (plasma membrane alteration, loss of ΔΨm, peroxisomal dysfunction, reactive oxygen species overproduction, induction of apoptosis and autophagy) were determined. ARPE-19 epithelial retinal cells were also used to evaluate the cytoprotective effect of SSO on 7KC-induced cell death. Unlike ω-3 and ω-9 fatty acids and Lorenzo's oil, sulfo-N-succinimidyl oleate had no cytotoxic effects over a wide range of concentrations. Noteworthy, unlike fatty acids and Lorenzo's oil, the cytoprotective effects of sulfo-N-succinimidyl oleate on 7KC-induced oxiapoptophagy, a caspase-dependent mode of cell death on 158N cells, were not associated with an accumulation of lipid droplets. In addition, on ARPE-19 cells, sulfo-N-succinimidyl oleate prevented 7KC-induced oxidative stress and cell death. These different characteristics of SSO make it possible to envisage its use for therapeutic purposes in diseases where 7-ketocholesterol levels are increased without eventual secondary side effects due to lipid droplets formation.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000212/pdfft?md5=1e23bfac82851964c3d64c5b12824733&pid=1-s2.0-S2590262824000212-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Lipid droplets dependent or independent cytoprotective activities of unsaturated fatty acids, Lorenzo’s oil and sulfo-N-succinimidyl oleate on 7-ketocholesterol-induced oxidative stress, organelle dysfunction and cell death on 158N and ARPE-19 cells: Cell targets and benefits of sulfo-N-succinimidyl oleate\",\"authors\":\"Thomas Nury ,&nbsp;Imen Ghzaiel ,&nbsp;Aziz Hichami ,&nbsp;Claudio Caccia ,&nbsp;Valerio Leoni ,&nbsp;Vivien Pires ,&nbsp;Atanas G Atanasov ,&nbsp;Amira Zarrouk ,&nbsp;Gérard Lizard ,&nbsp;Anne Vejux\",\"doi\":\"10.1016/j.crbiot.2024.100195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>7-ketocholesterol is a cytotoxic oxysterol which is frequently increased in many chronic inflammatory and age-related diseases. Thus, the inhibition of the toxicity of 7-ketocholesterol is a major challenge to treat these diseases. 158N oligodendrocytes were used to evaluate the cytoprotective effects of lipids: ω-3 and ω-9 fatty acids (α-linolenic acid (C18:3n-3), eicosapentaenoic acid (C20:5n-3), docosahexaenoic acid (C22:6n-3), erucic acid (C22:1n-9) and oleic acid (C18:1n-9)), Lorenzo's oil (a mixture of oleic and erucic acid, 4:1) and sulfo-N-succinimidyl oleate (SSO, a synthetic derivative of oleic acid). On 158N cells, the ability of these molecules to inhibit 7KC-induced oxiapoptophagy (plasma membrane alteration, loss of ΔΨm, peroxisomal dysfunction, reactive oxygen species overproduction, induction of apoptosis and autophagy) were determined. ARPE-19 epithelial retinal cells were also used to evaluate the cytoprotective effect of SSO on 7KC-induced cell death. Unlike ω-3 and ω-9 fatty acids and Lorenzo's oil, sulfo-N-succinimidyl oleate had no cytotoxic effects over a wide range of concentrations. Noteworthy, unlike fatty acids and Lorenzo's oil, the cytoprotective effects of sulfo-N-succinimidyl oleate on 7KC-induced oxiapoptophagy, a caspase-dependent mode of cell death on 158N cells, were not associated with an accumulation of lipid droplets. In addition, on ARPE-19 cells, sulfo-N-succinimidyl oleate prevented 7KC-induced oxidative stress and cell death. These different characteristics of SSO make it possible to envisage its use for therapeutic purposes in diseases where 7-ketocholesterol levels are increased without eventual secondary side effects due to lipid droplets formation.</p></div>\",\"PeriodicalId\":52676,\"journal\":{\"name\":\"Current Research in Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000212/pdfft?md5=1e23bfac82851964c3d64c5b12824733&pid=1-s2.0-S2590262824000212-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

7- 酮胆固醇是一种具有细胞毒性的氧杂环醇,在许多慢性炎症和与年龄有关的疾病中经常增加。因此,抑制 7-酮胆固醇的毒性是治疗这些疾病的一大挑战。158N 少突胶质细胞用于评估脂质的细胞保护作用:ω-3 和 ω-9 脂肪酸(α-亚麻酸(C18:3n-3)、二十碳五烯酸(C20:5n-3)、二十二碳六烯酸(C22:6n-3)、芥酸(C22:1n-9)和油酸(C18:1n-9))、洛伦佐油(油酸和芥酸的混合物,4:1)和 N-琥珀酰亚胺油酸磺酸盐(SSO,油酸的合成衍生物)。在 158N 细胞上,测定了这些分子抑制 7KC 诱导的氧凋亡吞噬(质膜改变、ΔΨm 损失、过氧化物酶体功能障碍、活性氧过量产生、诱导细胞凋亡和自噬)的能力。还使用 ARPE-19 上皮视网膜细胞来评估 SSO 对 7KC 诱导的细胞死亡的细胞保护作用。与 ω-3 和 ω-9 脂肪酸以及洛伦佐油不同,N-琥珀酰亚胺基油酸磺酯在广泛的浓度范围内没有细胞毒性作用。值得注意的是,与脂肪酸和洛伦佐油不同,Sulfo-N-琥珀酰亚胺基油酸酯对 7KC 诱导的氧凋亡(一种依赖于 Caspase 的细胞死亡模式)的细胞保护作用与脂滴的积累无关。此外,在 ARPE-19 细胞上,SSO-N-琥珀酰亚胺油酸酯可防止 7KC 诱导的氧化应激和细胞死亡。由于磺基琥珀酰亚胺油酸酯具有这些不同的特性,因此可以设想将其用于治疗 7-酮胆固醇水平升高的疾病,而不会因脂滴的形成而产生副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lipid droplets dependent or independent cytoprotective activities of unsaturated fatty acids, Lorenzo’s oil and sulfo-N-succinimidyl oleate on 7-ketocholesterol-induced oxidative stress, organelle dysfunction and cell death on 158N and ARPE-19 cells: Cell targets and benefits of sulfo-N-succinimidyl oleate

Lipid droplets dependent or independent cytoprotective activities of unsaturated fatty acids, Lorenzo’s oil and sulfo-N-succinimidyl oleate on 7-ketocholesterol-induced oxidative stress, organelle dysfunction and cell death on 158N and ARPE-19 cells: Cell targets and benefits of sulfo-N-succinimidyl oleate

7-ketocholesterol is a cytotoxic oxysterol which is frequently increased in many chronic inflammatory and age-related diseases. Thus, the inhibition of the toxicity of 7-ketocholesterol is a major challenge to treat these diseases. 158N oligodendrocytes were used to evaluate the cytoprotective effects of lipids: ω-3 and ω-9 fatty acids (α-linolenic acid (C18:3n-3), eicosapentaenoic acid (C20:5n-3), docosahexaenoic acid (C22:6n-3), erucic acid (C22:1n-9) and oleic acid (C18:1n-9)), Lorenzo's oil (a mixture of oleic and erucic acid, 4:1) and sulfo-N-succinimidyl oleate (SSO, a synthetic derivative of oleic acid). On 158N cells, the ability of these molecules to inhibit 7KC-induced oxiapoptophagy (plasma membrane alteration, loss of ΔΨm, peroxisomal dysfunction, reactive oxygen species overproduction, induction of apoptosis and autophagy) were determined. ARPE-19 epithelial retinal cells were also used to evaluate the cytoprotective effect of SSO on 7KC-induced cell death. Unlike ω-3 and ω-9 fatty acids and Lorenzo's oil, sulfo-N-succinimidyl oleate had no cytotoxic effects over a wide range of concentrations. Noteworthy, unlike fatty acids and Lorenzo's oil, the cytoprotective effects of sulfo-N-succinimidyl oleate on 7KC-induced oxiapoptophagy, a caspase-dependent mode of cell death on 158N cells, were not associated with an accumulation of lipid droplets. In addition, on ARPE-19 cells, sulfo-N-succinimidyl oleate prevented 7KC-induced oxidative stress and cell death. These different characteristics of SSO make it possible to envisage its use for therapeutic purposes in diseases where 7-ketocholesterol levels are increased without eventual secondary side effects due to lipid droplets formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Research in Biotechnology
Current Research in Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.70
自引率
3.60%
发文量
50
审稿时长
38 days
期刊介绍: Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines. Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信