{"title":"利用固体材料和熔融介质催化裂解甲烷制氢:综述","authors":"Lei Guo, Jinchi Tan, Junyue Ren, Zhancheng Guo","doi":"10.1063/5.0188819","DOIUrl":null,"url":null,"abstract":"Excessive emission of carbon dioxide is the leading cause of global warming. Hydrogen has the advantages of high calorific value and zero carbon emissions. It is considered an ideal energy to solve the problem of global warming, so the demand for hydrogen is increasing yearly. Due to economic considerations, methane is the main raw material for hydrogen production. Currently, 48% of the world's hydrogen comes from steam methane reforming. However, this process needs to burn some methane for heating, generating carbon dioxide emissions simultaneously. In order to avoid carbon emissions from hydrogen production, there is an urgent need to develop new methods to produce hydrogen from methane. Because the carbon generated from direct methane cracking exists in solid form while not as carbon dioxide, the direct methane cracking process for hydrogen production has become a hot research topic in recent years. In this paper, a comprehensive review of the research related to catalytic methane cracking for hydrogen production is presented, especially the research on catalytic cracking of methane using solid materials or molten metal media as catalytic media is summarized in detail. Next, a brief overview of the mechanism of catalytic methane cracking for hydrogen production and the characteristics of the generated carbon as a by-product are presented. Finally, the catalytic cracking of methane in molten media or solid materials and the research trend were prospected.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methane catalytic cracking by solid materials and molten media for hydrogen production: A review\",\"authors\":\"Lei Guo, Jinchi Tan, Junyue Ren, Zhancheng Guo\",\"doi\":\"10.1063/5.0188819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excessive emission of carbon dioxide is the leading cause of global warming. Hydrogen has the advantages of high calorific value and zero carbon emissions. It is considered an ideal energy to solve the problem of global warming, so the demand for hydrogen is increasing yearly. Due to economic considerations, methane is the main raw material for hydrogen production. Currently, 48% of the world's hydrogen comes from steam methane reforming. However, this process needs to burn some methane for heating, generating carbon dioxide emissions simultaneously. In order to avoid carbon emissions from hydrogen production, there is an urgent need to develop new methods to produce hydrogen from methane. Because the carbon generated from direct methane cracking exists in solid form while not as carbon dioxide, the direct methane cracking process for hydrogen production has become a hot research topic in recent years. In this paper, a comprehensive review of the research related to catalytic methane cracking for hydrogen production is presented, especially the research on catalytic cracking of methane using solid materials or molten metal media as catalytic media is summarized in detail. Next, a brief overview of the mechanism of catalytic methane cracking for hydrogen production and the characteristics of the generated carbon as a by-product are presented. Finally, the catalytic cracking of methane in molten media or solid materials and the research trend were prospected.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0188819\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0188819","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Methane catalytic cracking by solid materials and molten media for hydrogen production: A review
Excessive emission of carbon dioxide is the leading cause of global warming. Hydrogen has the advantages of high calorific value and zero carbon emissions. It is considered an ideal energy to solve the problem of global warming, so the demand for hydrogen is increasing yearly. Due to economic considerations, methane is the main raw material for hydrogen production. Currently, 48% of the world's hydrogen comes from steam methane reforming. However, this process needs to burn some methane for heating, generating carbon dioxide emissions simultaneously. In order to avoid carbon emissions from hydrogen production, there is an urgent need to develop new methods to produce hydrogen from methane. Because the carbon generated from direct methane cracking exists in solid form while not as carbon dioxide, the direct methane cracking process for hydrogen production has become a hot research topic in recent years. In this paper, a comprehensive review of the research related to catalytic methane cracking for hydrogen production is presented, especially the research on catalytic cracking of methane using solid materials or molten metal media as catalytic media is summarized in detail. Next, a brief overview of the mechanism of catalytic methane cracking for hydrogen production and the characteristics of the generated carbon as a by-product are presented. Finally, the catalytic cracking of methane in molten media or solid materials and the research trend were prospected.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.