Yannick Schrödel, Christoph Heyl, J. Dörsam, Mario Kupnik
{"title":"空气中的非接触式灯光控制","authors":"Yannick Schrödel, Christoph Heyl, J. Dörsam, Mario Kupnik","doi":"10.1002/piuz.202470206","DOIUrl":null,"url":null,"abstract":"Mithilfe hochintensiver Ultraschallwellen, die sich in gasförmigen Medien ausbreiten, ist es gelungen, ultrakurze Laserpulse mit einer bisher unerreichten Spitzenleistung von zwanzig Gigawatt in Luft abzulenken und dabei gleichzeitig eine herausragende Strahlqualität beizubehalten. Das könnte in Zukunft neue, äußerst robuste optische Bauteile wie beispielsweise Linsen oder Wellenleiter in bislang unerschlossenen spektralen Bereichen ermöglichen.","PeriodicalId":509983,"journal":{"name":"Physik in unserer Zeit","volume":"27 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Berührungslose Lichtkontrolle in Luft\",\"authors\":\"Yannick Schrödel, Christoph Heyl, J. Dörsam, Mario Kupnik\",\"doi\":\"10.1002/piuz.202470206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mithilfe hochintensiver Ultraschallwellen, die sich in gasförmigen Medien ausbreiten, ist es gelungen, ultrakurze Laserpulse mit einer bisher unerreichten Spitzenleistung von zwanzig Gigawatt in Luft abzulenken und dabei gleichzeitig eine herausragende Strahlqualität beizubehalten. Das könnte in Zukunft neue, äußerst robuste optische Bauteile wie beispielsweise Linsen oder Wellenleiter in bislang unerschlossenen spektralen Bereichen ermöglichen.\",\"PeriodicalId\":509983,\"journal\":{\"name\":\"Physik in unserer Zeit\",\"volume\":\"27 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physik in unserer Zeit\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/piuz.202470206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physik in unserer Zeit","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/piuz.202470206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mithilfe hochintensiver Ultraschallwellen, die sich in gasförmigen Medien ausbreiten, ist es gelungen, ultrakurze Laserpulse mit einer bisher unerreichten Spitzenleistung von zwanzig Gigawatt in Luft abzulenken und dabei gleichzeitig eine herausragende Strahlqualität beizubehalten. Das könnte in Zukunft neue, äußerst robuste optische Bauteile wie beispielsweise Linsen oder Wellenleiter in bislang unerschlossenen spektralen Bereichen ermöglichen.