C. Coudron, S. Berrens, M. Van Peer, D. Deruytter, J. Claeys, S. Van Miert
{"title":"黑背潜蝇幼虫在不同日粮中生长期间的氨排放量","authors":"C. Coudron, S. Berrens, M. Van Peer, D. Deruytter, J. Claeys, S. Van Miert","doi":"10.1163/23524588-00001049","DOIUrl":null,"url":null,"abstract":"\nBlack soldier fly (Hermetia illucens) is considered a farmed animal. The larvae live in a moist substrate, which leads to a complex interaction with the microbial community. As such the combined metabolism of the insects and that of the microbial community can ultimately lead to all sorts of emissions such as ammonia and greenhouse gases. For ammonia emissions and associated depositions, it is known that this can lead to eutrophication of local ecosystems and the formation of particulate matter which can affect human health. This issue is known for intensive livestock farming where in some Western European countries this has led to specific regulations, for example limited number of livestock per farm, to control ammonia emissions. The production of black soldier fly larvae is a novel activity that could similarly lead to ammonia emissions. This study introduces a new method to quantify ammonia emissions in an industrial setting using an accumulation chamber and validates the findings with a nitrogen mass balance. Additionally, different feed substrates (Gainesville diet, chicken feed, artificial supermarket waste and brewers spent grains) were assessed with varying crude protein concentrations, hypothetically one of the driving factors affecting emissions. Results indicate significant ammonia emissions, the total emissions during larval growth ranged from 2.6 up to 83.6 g N/kg larvae (dry matter basis) and depend strongly on the diet. The rates at which these emissions are produced are negligible during the first three days. In the following days all diets emitted ammonia at a varying rate. The highest observed hourly emission rate for test substrates could be as low as 6.8 mg N/kg initial substrate (dry matter basis) and as high as 306 mg/kg. Different properties of the feed, such as the initial crude protein concentration, but also how the pH changes throughout larval growth, will affect emissions.","PeriodicalId":48604,"journal":{"name":"Journal of Insects as Food and Feed","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ammonia emissions related to black soldier fly larvae during growth on different diets\",\"authors\":\"C. Coudron, S. Berrens, M. Van Peer, D. Deruytter, J. Claeys, S. Van Miert\",\"doi\":\"10.1163/23524588-00001049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nBlack soldier fly (Hermetia illucens) is considered a farmed animal. The larvae live in a moist substrate, which leads to a complex interaction with the microbial community. As such the combined metabolism of the insects and that of the microbial community can ultimately lead to all sorts of emissions such as ammonia and greenhouse gases. For ammonia emissions and associated depositions, it is known that this can lead to eutrophication of local ecosystems and the formation of particulate matter which can affect human health. This issue is known for intensive livestock farming where in some Western European countries this has led to specific regulations, for example limited number of livestock per farm, to control ammonia emissions. The production of black soldier fly larvae is a novel activity that could similarly lead to ammonia emissions. This study introduces a new method to quantify ammonia emissions in an industrial setting using an accumulation chamber and validates the findings with a nitrogen mass balance. Additionally, different feed substrates (Gainesville diet, chicken feed, artificial supermarket waste and brewers spent grains) were assessed with varying crude protein concentrations, hypothetically one of the driving factors affecting emissions. Results indicate significant ammonia emissions, the total emissions during larval growth ranged from 2.6 up to 83.6 g N/kg larvae (dry matter basis) and depend strongly on the diet. The rates at which these emissions are produced are negligible during the first three days. In the following days all diets emitted ammonia at a varying rate. The highest observed hourly emission rate for test substrates could be as low as 6.8 mg N/kg initial substrate (dry matter basis) and as high as 306 mg/kg. Different properties of the feed, such as the initial crude protein concentration, but also how the pH changes throughout larval growth, will affect emissions.\",\"PeriodicalId\":48604,\"journal\":{\"name\":\"Journal of Insects as Food and Feed\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insects as Food and Feed\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1163/23524588-00001049\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insects as Food and Feed","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1163/23524588-00001049","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Ammonia emissions related to black soldier fly larvae during growth on different diets
Black soldier fly (Hermetia illucens) is considered a farmed animal. The larvae live in a moist substrate, which leads to a complex interaction with the microbial community. As such the combined metabolism of the insects and that of the microbial community can ultimately lead to all sorts of emissions such as ammonia and greenhouse gases. For ammonia emissions and associated depositions, it is known that this can lead to eutrophication of local ecosystems and the formation of particulate matter which can affect human health. This issue is known for intensive livestock farming where in some Western European countries this has led to specific regulations, for example limited number of livestock per farm, to control ammonia emissions. The production of black soldier fly larvae is a novel activity that could similarly lead to ammonia emissions. This study introduces a new method to quantify ammonia emissions in an industrial setting using an accumulation chamber and validates the findings with a nitrogen mass balance. Additionally, different feed substrates (Gainesville diet, chicken feed, artificial supermarket waste and brewers spent grains) were assessed with varying crude protein concentrations, hypothetically one of the driving factors affecting emissions. Results indicate significant ammonia emissions, the total emissions during larval growth ranged from 2.6 up to 83.6 g N/kg larvae (dry matter basis) and depend strongly on the diet. The rates at which these emissions are produced are negligible during the first three days. In the following days all diets emitted ammonia at a varying rate. The highest observed hourly emission rate for test substrates could be as low as 6.8 mg N/kg initial substrate (dry matter basis) and as high as 306 mg/kg. Different properties of the feed, such as the initial crude protein concentration, but also how the pH changes throughout larval growth, will affect emissions.
期刊介绍:
The Journal of Insects as Food and Feed covers edible insects from harvesting in the wild through to industrial scale production. It publishes contributions to understanding the ecology and biology of edible insects and the factors that determine their abundance, the importance of food insects in people’s livelihoods, the value of ethno-entomological knowledge, and the role of technology transfer to assist people to utilise traditional knowledge to improve the value of insect foods in their lives. The journal aims to cover the whole chain of insect collecting or rearing to marketing edible insect products, including the development of sustainable technology, such as automation processes at affordable costs, detection, identification and mitigating of microbial contaminants, development of protocols for quality control, processing methodologies and how they affect digestibility and nutritional composition of insects, and the potential of insects to transform low value organic wastes into high protein products. At the end of the edible insect food or feed chain, marketing issues, consumer acceptance, regulation and legislation pose new research challenges. Food safety and legislation are intimately related. Consumer attitude is strongly dependent on the perceived safety. Microbial safety, toxicity due to chemical contaminants, and allergies are important issues in safety of insects as food and feed. Innovative contributions that address the multitude of aspects relevant for the utilisation of insects in increasing food and feed quality, safety and security are welcomed.