稳定的异域 Cuntz 对象是高阶图对象

Jeffrey L. Boersema, Sarah Browne, Elizabeth Gillaspy
{"title":"稳定的异域 Cuntz 对象是高阶图对象","authors":"Jeffrey L. Boersema, Sarah Browne, Elizabeth Gillaspy","doi":"10.1090/bproc/180","DOIUrl":null,"url":null,"abstract":"<p>For each odd integer <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n \\geq 3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we construct a rank-3 graph <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Lamda Subscript n\">\n <mml:semantics>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\Lambda _n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with involution <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"gamma Subscript n\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\gamma _n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> whose real <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^*</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript double-struck upper R Superscript asterisk Baseline left-parenthesis normal upper Lamda Subscript n Baseline comma gamma Subscript n Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mstyle displaystyle=\"false\" scriptlevel=\"2\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:mstyle>\n </mml:mrow>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C^*_{\\scriptscriptstyle \\mathbb {R}}(\\Lambda _n, \\gamma _n)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is stably isomorphic to the exotic Cuntz algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper E Subscript n\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">E</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal E_n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This construction is optimal, as we prove that a rank-2 graph with involution <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis normal upper Lamda comma gamma right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(\\Lambda ,\\gamma )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can never satisfy <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript double-struck upper R Superscript asterisk Baseline left-parenthesis normal upper Lamda comma gamma right-parenthesis tilde Subscript upper M upper E Baseline script upper E Subscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mstyle displaystyle=\"false\" scriptlevel=\"2\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:mstyle>\n </mml:mrow>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msub>\n <mml:mo>∼<!-- ∼ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>M</mml:mi>\n <mml:mi>E</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">E</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C^*_{\\scriptscriptstyle \\mathbb {R}}(\\Lambda , \\gamma )\\sim _{ME} \\mathcal E_n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and Boersema reached the same conclusion for rank-1 graphs (directed graphs) in [Münster J. Math. <bold>10</bold> (2017), pp. 485–521, Corollary 4.3]. Our construction relies on a rank-1 graph with involution <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis normal upper Lamda comma gamma right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(\\Lambda , \\gamma )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> whose real <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^*</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript double-struck upper R Superscript asterisk Baseline left-parenthesis normal upper Lamda comma gamma right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mstyle displaystyle=\"false\" scriptlevel=\"2\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:mstyle>\n </mml:mrow>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C^*_{\\scriptscriptstyle \\mathbb {R}}(\\Lambda , \\gamma )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is stably isomorphic to the suspension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S double-struck upper R\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>S</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">S \\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In the Appendix, we show that the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"i\">\n <mml:semantics>\n <mml:mi>i</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">i</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-fold suspension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S Superscript i Baseline double-struck upper R\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">S^i \\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is stably isomorphic to a graph algebra iff <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"negative 2 less-than-or-equal-to i less-than-or-equal-to 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>i</mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">-2 \\leq i \\leq 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"118 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The stable exotic Cuntz algebras are higher-rank graph algebras\",\"authors\":\"Jeffrey L. Boersema, Sarah Browne, Elizabeth Gillaspy\",\"doi\":\"10.1090/bproc/180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For each odd integer <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n greater-than-or-equal-to 3\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>n</mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>3</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">n \\\\geq 3</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, we construct a rank-3 graph <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Lamda Subscript n\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Lambda _n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with involution <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"gamma Subscript n\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>γ<!-- γ --></mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\gamma _n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> whose real <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript asterisk\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mo>∗<!-- ∗ --></mml:mo>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^*</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Subscript double-struck upper R Superscript asterisk Baseline left-parenthesis normal upper Lamda Subscript n Baseline comma gamma Subscript n Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msubsup>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"2\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n </mml:mstyle>\\n </mml:mrow>\\n <mml:mo>∗<!-- ∗ --></mml:mo>\\n </mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>γ<!-- γ --></mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^*_{\\\\scriptscriptstyle \\\\mathbb {R}}(\\\\Lambda _n, \\\\gamma _n)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is stably isomorphic to the exotic Cuntz algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper E Subscript n\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">E</mml:mi>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal E_n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. This construction is optimal, as we prove that a rank-2 graph with involution <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis normal upper Lamda comma gamma right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>γ<!-- γ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(\\\\Lambda ,\\\\gamma )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> can never satisfy <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Subscript double-struck upper R Superscript asterisk Baseline left-parenthesis normal upper Lamda comma gamma right-parenthesis tilde Subscript upper M upper E Baseline script upper E Subscript n\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msubsup>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"2\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n </mml:mstyle>\\n </mml:mrow>\\n <mml:mo>∗<!-- ∗ --></mml:mo>\\n </mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>γ<!-- γ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:msub>\\n <mml:mo>∼<!-- ∼ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>M</mml:mi>\\n <mml:mi>E</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">E</mml:mi>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^*_{\\\\scriptscriptstyle \\\\mathbb {R}}(\\\\Lambda , \\\\gamma )\\\\sim _{ME} \\\\mathcal E_n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, and Boersema reached the same conclusion for rank-1 graphs (directed graphs) in [Münster J. Math. <bold>10</bold> (2017), pp. 485–521, Corollary 4.3]. Our construction relies on a rank-1 graph with involution <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis normal upper Lamda comma gamma right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>γ<!-- γ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(\\\\Lambda , \\\\gamma )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> whose real <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript asterisk\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mo>∗<!-- ∗ --></mml:mo>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^*</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Subscript double-struck upper R Superscript asterisk Baseline left-parenthesis normal upper Lamda comma gamma right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msubsup>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"2\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n </mml:mstyle>\\n </mml:mrow>\\n <mml:mo>∗<!-- ∗ --></mml:mo>\\n </mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>γ<!-- γ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^*_{\\\\scriptscriptstyle \\\\mathbb {R}}(\\\\Lambda , \\\\gamma )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is stably isomorphic to the suspension <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S double-struck upper R\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>S</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">S \\\\mathbb {R}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. In the Appendix, we show that the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"i\\\">\\n <mml:semantics>\\n <mml:mi>i</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">i</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-fold suspension <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S Superscript i Baseline double-struck upper R\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>S</mml:mi>\\n <mml:mi>i</mml:mi>\\n </mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">S^i \\\\mathbb {R}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is stably isomorphic to a graph algebra iff <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"negative 2 less-than-or-equal-to i less-than-or-equal-to 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mi>i</mml:mi>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">-2 \\\\leq i \\\\leq 1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"118 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于每个奇整数 n ≥ 3 n \geq 3,我们构造了一个具有反卷 γ n \gamma _n 的秩 3 图Λ n \Lambda _n,其实 C∗ C^* -代数 C R∗ ( Λ n 、 γ n ) C^*_{scriptscriptstyle \mathbb {R}}(\Lambda _n, \gamma _n) 与奇异的 Cuntz 代数 E n \mathcal E_n 稳定同构。这种构造是最优的,因为我们证明了带有卷积 ( Λ , γ ) (\Lambda ,\gamma ) 的秩 2 图永远不会满足 C R∗ ( Λ , γ ) ∼ M E E n C^*_{\scriptscriptstyle \mathbb {R}}(\Lambda , \gamma )\sim _{ME} 。\Boersema 在 [Münster J. Math. 10 (2017), pp.我们的构造依赖于一个具有卷积 ( Λ , γ ) (\Lambda , \gamma ) 的秩-1 图,其实 C∗ C^* -代数 C R∗ ( Λ , γ ) C^*_{\scriptscriptstyle \mathbb {R}}(\Lambda , \gamma ) 与悬浮 S R S \mathbb {R} 稳定同构。在附录中,我们将证明,如果 - 2 ≤ i ≤ 1 -2 \leq i \leq 1 ,那么 i i 层悬浮 S i R S^i \mathbb {R} 与图代数稳定同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The stable exotic Cuntz algebras are higher-rank graph algebras

For each odd integer n 3 n \geq 3 , we construct a rank-3 graph Λ n \Lambda _n with involution γ n \gamma _n whose real C C^* -algebra C R ( Λ n , γ n ) C^*_{\scriptscriptstyle \mathbb {R}}(\Lambda _n, \gamma _n) is stably isomorphic to the exotic Cuntz algebra E n \mathcal E_n . This construction is optimal, as we prove that a rank-2 graph with involution ( Λ , γ ) (\Lambda ,\gamma ) can never satisfy C R ( Λ , γ ) M E E n C^*_{\scriptscriptstyle \mathbb {R}}(\Lambda , \gamma )\sim _{ME} \mathcal E_n , and Boersema reached the same conclusion for rank-1 graphs (directed graphs) in [Münster J. Math. 10 (2017), pp. 485–521, Corollary 4.3]. Our construction relies on a rank-1 graph with involution ( Λ , γ ) (\Lambda , \gamma ) whose real C C^* -algebra C R ( Λ , γ ) C^*_{\scriptscriptstyle \mathbb {R}}(\Lambda , \gamma ) is stably isomorphic to the suspension S R S \mathbb {R} . In the Appendix, we show that the i i -fold suspension S i R S^i \mathbb {R} is stably isomorphic to a graph algebra iff 2 i 1 -2 \leq i \leq 1 .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信