基于捕食者阿利效应的捕食者-猎物系统几何与数值分析

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
M. K. Gupta, Abha Sahu, C. K. Yadav
{"title":"基于捕食者阿利效应的捕食者-猎物系统几何与数值分析","authors":"M. K. Gupta, Abha Sahu, C. K. Yadav","doi":"10.1142/s0218127424500330","DOIUrl":null,"url":null,"abstract":"This study explores the complex dynamics of the predator–prey interactions, with a specific emphasis on the influence of the Allee effect on the predator population. We examined the fundamental mathematical characteristics of the model under consideration, such as the positivity of the system and the boundedness of the solutions. We investigated the equilibrium points and analyzed their stability using the Jacobi and Lyapunov methods. A comprehensive examination was carried out on the geometric properties of the dynamical system to compute the five invariants of the KCC theory. In particular, the deviation curvature tensor and its eigenvalues are investigated to demonstrate the behavior of the system stability. We have also obtained the necessary and sufficient conditions for the given set of parameters of the system in order to have the Jacobi stability (instability) near the equilibrium point. To visualize the dynamical behavior of the predator–prey model with the Allee effect in the predator density, numerical simulations were conducted. The investigation encompasses an examination of the system’s behavior from both geometric and numerical standpoints, with the objective of attaining a thorough comprehension using few examples.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometrical and Numerical Analysis of Predator–Prey System Based on the Allee Effect in Predator\",\"authors\":\"M. K. Gupta, Abha Sahu, C. K. Yadav\",\"doi\":\"10.1142/s0218127424500330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the complex dynamics of the predator–prey interactions, with a specific emphasis on the influence of the Allee effect on the predator population. We examined the fundamental mathematical characteristics of the model under consideration, such as the positivity of the system and the boundedness of the solutions. We investigated the equilibrium points and analyzed their stability using the Jacobi and Lyapunov methods. A comprehensive examination was carried out on the geometric properties of the dynamical system to compute the five invariants of the KCC theory. In particular, the deviation curvature tensor and its eigenvalues are investigated to demonstrate the behavior of the system stability. We have also obtained the necessary and sufficient conditions for the given set of parameters of the system in order to have the Jacobi stability (instability) near the equilibrium point. To visualize the dynamical behavior of the predator–prey model with the Allee effect in the predator density, numerical simulations were conducted. The investigation encompasses an examination of the system’s behavior from both geometric and numerical standpoints, with the objective of attaining a thorough comprehension using few examples.\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500330\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500330","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了捕食者与被捕食者之间复杂的动态相互作用,重点是阿利效应对捕食者种群的影响。我们研究了所考虑模型的基本数学特征,如系统的实在性和解的有界性。我们使用 Jacobi 和 Lyapunov 方法研究了平衡点并分析了其稳定性。为了计算 KCC 理论的五个不变量,我们对动力系统的几何特性进行了全面研究。特别是对偏离曲率张量及其特征值进行了研究,以证明系统稳定性的行为。我们还获得了系统给定参数集的必要和充分条件,以便在平衡点附近具有雅可比稳定性(不稳定性)。为了直观地显示捕食者-猎物模型的动态行为,以及捕食者密度的阿利效应,我们进行了数值模拟。这项研究包括从几何和数值角度对系统行为的研究,目的是通过几个例子来达到全面理解的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometrical and Numerical Analysis of Predator–Prey System Based on the Allee Effect in Predator
This study explores the complex dynamics of the predator–prey interactions, with a specific emphasis on the influence of the Allee effect on the predator population. We examined the fundamental mathematical characteristics of the model under consideration, such as the positivity of the system and the boundedness of the solutions. We investigated the equilibrium points and analyzed their stability using the Jacobi and Lyapunov methods. A comprehensive examination was carried out on the geometric properties of the dynamical system to compute the five invariants of the KCC theory. In particular, the deviation curvature tensor and its eigenvalues are investigated to demonstrate the behavior of the system stability. We have also obtained the necessary and sufficient conditions for the given set of parameters of the system in order to have the Jacobi stability (instability) near the equilibrium point. To visualize the dynamical behavior of the predator–prey model with the Allee effect in the predator density, numerical simulations were conducted. The investigation encompasses an examination of the system’s behavior from both geometric and numerical standpoints, with the objective of attaining a thorough comprehension using few examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信