{"title":"多参数持久性模块的 \"弦理论\":可加性","authors":"Ryan E. Grady, Anna Schenfisch","doi":"10.1090/bproc/208","DOIUrl":null,"url":null,"abstract":"Persistence modules stratify their underlying parameter space, a quality that makes persistence modules amenable to study via invariants of stratified spaces. In this article, we extend a result previously known only for one-parameter persistence modules to grid multiparameter persistence modules. Namely, we show the \n\n \n K\n K\n \n\n-theory of grid multiparameter persistence modules is additive over strata. This is true for both standard monotone multi-parameter persistence as well as multiparameter notions of zig-zag persistence. We compare our calculations for the specific group \n\n \n \n K\n 0\n \n K_0\n \n\n with the recent work of Botnan, Oppermann, and Oudot, highlighting and explaining the differences between our results through an explicit projection map between computed groups.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"128 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"𝐾-theory of multiparameter persistence modules: Additivity\",\"authors\":\"Ryan E. Grady, Anna Schenfisch\",\"doi\":\"10.1090/bproc/208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Persistence modules stratify their underlying parameter space, a quality that makes persistence modules amenable to study via invariants of stratified spaces. In this article, we extend a result previously known only for one-parameter persistence modules to grid multiparameter persistence modules. Namely, we show the \\n\\n \\n K\\n K\\n \\n\\n-theory of grid multiparameter persistence modules is additive over strata. This is true for both standard monotone multi-parameter persistence as well as multiparameter notions of zig-zag persistence. We compare our calculations for the specific group \\n\\n \\n \\n K\\n 0\\n \\n K_0\\n \\n\\n with the recent work of Botnan, Oppermann, and Oudot, highlighting and explaining the differences between our results through an explicit projection map between computed groups.\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"128 19\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
持久性模块将其底层参数空间分层,这一特性使得持久性模块可以通过分层空间的不变量进行研究。在本文中,我们将以前只针对单参数持久性模块的一个已知结果扩展到网格多参数持久性模块。也就是说,我们证明了网格多参数持久性模块的 K K 理论在层上是可加的。这对于标准单调多参数持久性以及之字形持久性的多参数概念都是正确的。我们将特定组 K 0 K_0 的计算结果与 Botnan、Oppermann 和 Oudot 的最新研究成果进行了比较,通过计算组之间的明确投影图,强调并解释了我们结果之间的差异。
𝐾-theory of multiparameter persistence modules: Additivity
Persistence modules stratify their underlying parameter space, a quality that makes persistence modules amenable to study via invariants of stratified spaces. In this article, we extend a result previously known only for one-parameter persistence modules to grid multiparameter persistence modules. Namely, we show the
K
K
-theory of grid multiparameter persistence modules is additive over strata. This is true for both standard monotone multi-parameter persistence as well as multiparameter notions of zig-zag persistence. We compare our calculations for the specific group
K
0
K_0
with the recent work of Botnan, Oppermann, and Oudot, highlighting and explaining the differences between our results through an explicit projection map between computed groups.