猕猴一生的脑年龄

IF 3.7 3区 医学 Q2 GERIATRICS & GERONTOLOGY
Yang S. Liu , Madhura Baxi , Christopher R. Madan , Kevin Zhan , Nikolaos Makris , Douglas L. Rosene , Ronald J. Killiany , Suheyla Cetin-Karayumak , Ofer Pasternak , Marek Kubicki , Bo Cao
{"title":"猕猴一生的脑年龄","authors":"Yang S. Liu ,&nbsp;Madhura Baxi ,&nbsp;Christopher R. Madan ,&nbsp;Kevin Zhan ,&nbsp;Nikolaos Makris ,&nbsp;Douglas L. Rosene ,&nbsp;Ronald J. Killiany ,&nbsp;Suheyla Cetin-Karayumak ,&nbsp;Ofer Pasternak ,&nbsp;Marek Kubicki ,&nbsp;Bo Cao","doi":"10.1016/j.neurobiolaging.2024.02.014","DOIUrl":null,"url":null,"abstract":"<div><p>Through the application of machine learning algorithms to neuroimaging data the brain age methodology was shown to provide a useful individual-level biological age prediction and identify key brain regions responsible for the prediction. In this study, we present the methodology of constructing a rhesus macaque brain age model using a machine learning algorithm and discuss the key predictive brain regions in comparison to the human brain, to shed light on cross-species primate similarities and differences. Structural information of the brain (e.g., parcellated volumes) from brain magnetic resonance imaging of 43 rhesus macaques were used to develop brain atlas-based features to build a brain age model that predicts biological age. The best-performing model used 22 selected features and achieved an R<sup>2</sup> of 0.72. We also identified interpretable predictive brain features including Right Fronto-orbital Cortex, Right Frontal Pole, Right Inferior Lateral Parietal Cortex, and Bilateral Posterior Central Operculum. Our findings provide converging evidence of the parallel and comparable brain regions responsible for both non-human primates and human biological age prediction.</p></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"139 ","pages":"Pages 73-81"},"PeriodicalIF":3.7000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0197458024000502/pdfft?md5=5ade5e6fb0852348d65104cf1fb1a8f1&pid=1-s2.0-S0197458024000502-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Brain age of rhesus macaques over the lifespan\",\"authors\":\"Yang S. Liu ,&nbsp;Madhura Baxi ,&nbsp;Christopher R. Madan ,&nbsp;Kevin Zhan ,&nbsp;Nikolaos Makris ,&nbsp;Douglas L. Rosene ,&nbsp;Ronald J. Killiany ,&nbsp;Suheyla Cetin-Karayumak ,&nbsp;Ofer Pasternak ,&nbsp;Marek Kubicki ,&nbsp;Bo Cao\",\"doi\":\"10.1016/j.neurobiolaging.2024.02.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Through the application of machine learning algorithms to neuroimaging data the brain age methodology was shown to provide a useful individual-level biological age prediction and identify key brain regions responsible for the prediction. In this study, we present the methodology of constructing a rhesus macaque brain age model using a machine learning algorithm and discuss the key predictive brain regions in comparison to the human brain, to shed light on cross-species primate similarities and differences. Structural information of the brain (e.g., parcellated volumes) from brain magnetic resonance imaging of 43 rhesus macaques were used to develop brain atlas-based features to build a brain age model that predicts biological age. The best-performing model used 22 selected features and achieved an R<sup>2</sup> of 0.72. We also identified interpretable predictive brain features including Right Fronto-orbital Cortex, Right Frontal Pole, Right Inferior Lateral Parietal Cortex, and Bilateral Posterior Central Operculum. Our findings provide converging evidence of the parallel and comparable brain regions responsible for both non-human primates and human biological age prediction.</p></div>\",\"PeriodicalId\":19110,\"journal\":{\"name\":\"Neurobiology of Aging\",\"volume\":\"139 \",\"pages\":\"Pages 73-81\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0197458024000502/pdfft?md5=5ade5e6fb0852348d65104cf1fb1a8f1&pid=1-s2.0-S0197458024000502-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Aging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0197458024000502\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Aging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197458024000502","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过将机器学习算法应用于神经影像学数据,脑年龄方法学被证明可以提供有用的个体水平生物年龄预测,并确定负责预测的关键脑区。在本研究中,我们介绍了利用机器学习算法构建猕猴脑年龄模型的方法,并讨论了与人脑相比的关键预测脑区,以揭示灵长类动物的异同。研究人员利用43只猕猴的脑磁共振成像获得的大脑结构信息(如切片体积)开发了基于脑图谱的特征,从而建立了预测生物年龄的脑年龄模型。表现最好的模型使用了 22 个选定特征,R2 为 0.72。我们还确定了可解释的预测性大脑特征,包括右侧眶前皮层、右侧额极、右侧顶叶下外侧皮层和双侧中央后厣。我们的研究结果为非人灵长类和人类的生物年龄预测提供了平行和可比较的大脑区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain age of rhesus macaques over the lifespan

Through the application of machine learning algorithms to neuroimaging data the brain age methodology was shown to provide a useful individual-level biological age prediction and identify key brain regions responsible for the prediction. In this study, we present the methodology of constructing a rhesus macaque brain age model using a machine learning algorithm and discuss the key predictive brain regions in comparison to the human brain, to shed light on cross-species primate similarities and differences. Structural information of the brain (e.g., parcellated volumes) from brain magnetic resonance imaging of 43 rhesus macaques were used to develop brain atlas-based features to build a brain age model that predicts biological age. The best-performing model used 22 selected features and achieved an R2 of 0.72. We also identified interpretable predictive brain features including Right Fronto-orbital Cortex, Right Frontal Pole, Right Inferior Lateral Parietal Cortex, and Bilateral Posterior Central Operculum. Our findings provide converging evidence of the parallel and comparable brain regions responsible for both non-human primates and human biological age prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurobiology of Aging
Neurobiology of Aging 医学-老年医学
CiteScore
8.40
自引率
2.40%
发文量
225
审稿时长
67 days
期刊介绍: Neurobiology of Aging publishes the results of studies in behavior, biochemistry, cell biology, endocrinology, molecular biology, morphology, neurology, neuropathology, pharmacology, physiology and protein chemistry in which the primary emphasis involves mechanisms of nervous system changes with age or diseases associated with age. Reviews and primary research articles are included, occasionally accompanied by open peer commentary. Letters to the Editor and brief communications are also acceptable. Brief reports of highly time-sensitive material are usually treated as rapid communications in which case editorial review is completed within six weeks and publication scheduled for the next available issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信