利用定制神经网络增强复合材料层压板结构

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaoming Xu, Jianjun Wei, Sheng Sang
{"title":"利用定制神经网络增强复合材料层压板结构","authors":"Xiaoming Xu, Jianjun Wei, Sheng Sang","doi":"10.1557/s43579-024-00536-5","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a groundbreaking strategy for optimizing composite laminate structures by integrating finite element modeling with a specialized multi-layer neural network. The neural network is trained on precise ground truth data obtained from rigorous finite element simulations, allowing it to discern intricate correlations among layer orientations, boundary conditions, and optimized designs. Tailored to the nuances of laminar composite optimization, the developed neural network emerges as a potent predictive tool, providing deep insights into the intricate interdependencies of design parameters. The study's findings hold immense promise for advancing materials design and structural engineering, highlighting the transformative potential of combining computational intelligence with traditional modeling approaches.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"96 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing composite laminate structures with tailored neural networks\",\"authors\":\"Xiaoming Xu, Jianjun Wei, Sheng Sang\",\"doi\":\"10.1557/s43579-024-00536-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a groundbreaking strategy for optimizing composite laminate structures by integrating finite element modeling with a specialized multi-layer neural network. The neural network is trained on precise ground truth data obtained from rigorous finite element simulations, allowing it to discern intricate correlations among layer orientations, boundary conditions, and optimized designs. Tailored to the nuances of laminar composite optimization, the developed neural network emerges as a potent predictive tool, providing deep insights into the intricate interdependencies of design parameters. The study's findings hold immense promise for advancing materials design and structural engineering, highlighting the transformative potential of combining computational intelligence with traditional modeling approaches.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":19016,\"journal\":{\"name\":\"MRS Communications\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43579-024-00536-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00536-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文通过将有限元建模与专门的多层神经网络相结合,提出了优化复合材料层压板结构的突破性策略。该神经网络根据从严格的有限元模拟中获得的精确地面实况数据进行训练,使其能够辨别层方向、边界条件和优化设计之间错综复杂的相关性。针对层状复合材料优化的细微差别,所开发的神经网络成为一种有效的预测工具,能深入洞察设计参数之间错综复杂的相互依存关系。这项研究的发现为推进材料设计和结构工程带来了巨大希望,凸显了将计算智能与传统建模方法相结合的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing composite laminate structures with tailored neural networks

Enhancing composite laminate structures with tailored neural networks

This paper presents a groundbreaking strategy for optimizing composite laminate structures by integrating finite element modeling with a specialized multi-layer neural network. The neural network is trained on precise ground truth data obtained from rigorous finite element simulations, allowing it to discern intricate correlations among layer orientations, boundary conditions, and optimized designs. Tailored to the nuances of laminar composite optimization, the developed neural network emerges as a potent predictive tool, providing deep insights into the intricate interdependencies of design parameters. The study's findings hold immense promise for advancing materials design and structural engineering, highlighting the transformative potential of combining computational intelligence with traditional modeling approaches.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MRS Communications
MRS Communications MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
2.60
自引率
10.50%
发文量
166
审稿时长
>12 weeks
期刊介绍: MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信