{"title":"非破坏性全株表型揭示渗透胁迫下高粱品种水分利用效率、光合作用和根圈酸化的动态变化","authors":"Daniel N. Ginzburg, Jack A. Cox, Seung Y. Rhee","doi":"10.1002/pld3.571","DOIUrl":null,"url":null,"abstract":"Noninvasive phenotyping can quantify dynamic plant growth processes at higher temporal resolution than destructive phenotyping and can reveal phenomena that would be missed by end‐point analysis alone. Additionally, whole‐plant phenotyping can identify growth conditions that are optimal for both above‐ and below‐ground tissues. However, noninvasive, whole‐plant phenotyping approaches available today are generally expensive, complex, and non‐modular. We developed a low‐cost and versatile approach to noninvasively measure whole‐plant physiology over time by growing plants in isolated hydroponic chambers. We demonstrate the versatility of our approach by measuring whole‐plant biomass accumulation, water use, and water use efficiency every two days on unstressed and osmotically stressed sorghum accessions. We identified relationships between root zone acidification and photosynthesis on whole‐plant water use efficiency over time. Our system can be implemented using cheap, basic components, requires no specific technical expertise, and should be suitable for any non‐aquatic vascular plant species.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non‐destructive, whole‐plant phenotyping reveals dynamic changes in water use efficiency, photosynthesis, and rhizosphere acidification of sorghum accessions under osmotic stress\",\"authors\":\"Daniel N. Ginzburg, Jack A. Cox, Seung Y. Rhee\",\"doi\":\"10.1002/pld3.571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noninvasive phenotyping can quantify dynamic plant growth processes at higher temporal resolution than destructive phenotyping and can reveal phenomena that would be missed by end‐point analysis alone. Additionally, whole‐plant phenotyping can identify growth conditions that are optimal for both above‐ and below‐ground tissues. However, noninvasive, whole‐plant phenotyping approaches available today are generally expensive, complex, and non‐modular. We developed a low‐cost and versatile approach to noninvasively measure whole‐plant physiology over time by growing plants in isolated hydroponic chambers. We demonstrate the versatility of our approach by measuring whole‐plant biomass accumulation, water use, and water use efficiency every two days on unstressed and osmotically stressed sorghum accessions. We identified relationships between root zone acidification and photosynthesis on whole‐plant water use efficiency over time. Our system can be implemented using cheap, basic components, requires no specific technical expertise, and should be suitable for any non‐aquatic vascular plant species.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Non‐destructive, whole‐plant phenotyping reveals dynamic changes in water use efficiency, photosynthesis, and rhizosphere acidification of sorghum accessions under osmotic stress
Noninvasive phenotyping can quantify dynamic plant growth processes at higher temporal resolution than destructive phenotyping and can reveal phenomena that would be missed by end‐point analysis alone. Additionally, whole‐plant phenotyping can identify growth conditions that are optimal for both above‐ and below‐ground tissues. However, noninvasive, whole‐plant phenotyping approaches available today are generally expensive, complex, and non‐modular. We developed a low‐cost and versatile approach to noninvasively measure whole‐plant physiology over time by growing plants in isolated hydroponic chambers. We demonstrate the versatility of our approach by measuring whole‐plant biomass accumulation, water use, and water use efficiency every two days on unstressed and osmotically stressed sorghum accessions. We identified relationships between root zone acidification and photosynthesis on whole‐plant water use efficiency over time. Our system can be implemented using cheap, basic components, requires no specific technical expertise, and should be suitable for any non‐aquatic vascular plant species.