{"title":"指数级粘弹性涂层半平面在刚性平冲压头尖端压入下的应力和变形分析","authors":"İsa Çömez","doi":"10.1007/s11043-024-09682-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper solves the dynamic contact problem when a rigid flat punch indents into an exponentially graded (FG) viscoelastic coated homogeneous half-plane. A harmonic vertical force is applied to the FG coating, and the solution is obtained for the stress and displacement for both the FG viscoelastic coating and the half-plane using the Helmholtz functions and the Fourier integral transform technique. By applying specific boundary conditions, the contact mechanics problem is converted into a singular integral equation of the first kind. This equation is then solved numerically using the Gauss-Chebyshev integration formulas. The analysis provides detailed insights into how various parameters—such as external excitation frequency, loss factor ratio, Young’s modulus ratio, density ratio, Poisson’s ratio, indentation load, and punch length—affect the dynamic contact stress and dynamic in-plane stress.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1271 - 1289"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11043-024-09682-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis of stress and deformation of an exponentially graded viscoelastic coated half plane under indentation by a rigid flat punch indenter tip\",\"authors\":\"İsa Çömez\",\"doi\":\"10.1007/s11043-024-09682-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper solves the dynamic contact problem when a rigid flat punch indents into an exponentially graded (FG) viscoelastic coated homogeneous half-plane. A harmonic vertical force is applied to the FG coating, and the solution is obtained for the stress and displacement for both the FG viscoelastic coating and the half-plane using the Helmholtz functions and the Fourier integral transform technique. By applying specific boundary conditions, the contact mechanics problem is converted into a singular integral equation of the first kind. This equation is then solved numerically using the Gauss-Chebyshev integration formulas. The analysis provides detailed insights into how various parameters—such as external excitation frequency, loss factor ratio, Young’s modulus ratio, density ratio, Poisson’s ratio, indentation load, and punch length—affect the dynamic contact stress and dynamic in-plane stress.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"28 3\",\"pages\":\"1271 - 1289\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11043-024-09682-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-024-09682-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09682-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Analysis of stress and deformation of an exponentially graded viscoelastic coated half plane under indentation by a rigid flat punch indenter tip
This paper solves the dynamic contact problem when a rigid flat punch indents into an exponentially graded (FG) viscoelastic coated homogeneous half-plane. A harmonic vertical force is applied to the FG coating, and the solution is obtained for the stress and displacement for both the FG viscoelastic coating and the half-plane using the Helmholtz functions and the Fourier integral transform technique. By applying specific boundary conditions, the contact mechanics problem is converted into a singular integral equation of the first kind. This equation is then solved numerically using the Gauss-Chebyshev integration formulas. The analysis provides detailed insights into how various parameters—such as external excitation frequency, loss factor ratio, Young’s modulus ratio, density ratio, Poisson’s ratio, indentation load, and punch length—affect the dynamic contact stress and dynamic in-plane stress.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.