{"title":"表面大地流的伯克霍夫程序及其应用:同次元","authors":"Gonzalo Contreras, Fernando Oliveira","doi":"10.1007/s10884-024-10349-8","DOIUrl":null,"url":null,"abstract":"<p>We show that a Kupka–Smale riemannian metric on a closed surface contains a finite primary set of closed geodesics, i.e. they intersect any other geodesic and divide the surface into simply connected regions. From them we obtain a finite set of disjoint surfaces of section of genera 0 or 1, which intersect any orbit of the geodesic flow. As an application we obtain that the geodesic flow of a Kupka–Smale riemannian metric on a closed surface has homoclinic orbits for all branches of all of its hyperbolic closed geodesics.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Birkhoff Program for Geodesic Flows of Surfaces and Applications: Homoclinics\",\"authors\":\"Gonzalo Contreras, Fernando Oliveira\",\"doi\":\"10.1007/s10884-024-10349-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that a Kupka–Smale riemannian metric on a closed surface contains a finite primary set of closed geodesics, i.e. they intersect any other geodesic and divide the surface into simply connected regions. From them we obtain a finite set of disjoint surfaces of section of genera 0 or 1, which intersect any orbit of the geodesic flow. As an application we obtain that the geodesic flow of a Kupka–Smale riemannian metric on a closed surface has homoclinic orbits for all branches of all of its hyperbolic closed geodesics.\\n</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-024-10349-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-024-10349-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Birkhoff Program for Geodesic Flows of Surfaces and Applications: Homoclinics
We show that a Kupka–Smale riemannian metric on a closed surface contains a finite primary set of closed geodesics, i.e. they intersect any other geodesic and divide the surface into simply connected regions. From them we obtain a finite set of disjoint surfaces of section of genera 0 or 1, which intersect any orbit of the geodesic flow. As an application we obtain that the geodesic flow of a Kupka–Smale riemannian metric on a closed surface has homoclinic orbits for all branches of all of its hyperbolic closed geodesics.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.