{"title":"中国黄河口湿地沉积物中细菌与几种氧化还原敏感金属(铁、锰、铀)之间的相互作用","authors":"Jiahong Xi, Xihuang Zhong, Tong Zhang, Yu Zhen, Li Zou, Xueyan Jiang","doi":"10.1007/s12237-024-01338-7","DOIUrl":null,"url":null,"abstract":"<p>Estuarine wetlands are characterized by high biodiversity and active fluctuations in redox-sensitive metals (RSMs). In this study, sediment samples were collected from two sites, one with and one without vegetation, in the Yellow River Estuary Wetland (YREW). Active forms of Fe, Mn, and U were extracted using Tessier’s sequential extraction method, the bacterial community was analyzed through high-throughput sequencing, and the impact of the community on the RSMs was evaluated. The results indicated that the high nutrient content generated by vegetation withering had a positive effect on bacterial biodiversity, which led to high biomass and a wide variety of species in the sediments. Redox conditions and nutrient levels were the main factors influencing bacterial community structure. Under reducing conditions, genera such as <i>Desulfococcus</i> and <i>Desulfosarcina</i> were the main bacteria mediating the reduction of active Fe and Mn. Bacteria in genera such as <i>Desulfatiglans</i> and <i>Desulfotomaculum</i> were the main bacteria mediating the reduction of active U. These bacteria may result in obvious changes in the release of Fe, Mn, and U from salt marshes to nearshore regions. Our results can help to elucidate the interactions of bacteria and RSMs.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"199 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactions Between Bacteria and Several Redox-Sensitive Metals (Fe, Mn, U) in the Sediments of the Yellow River Estuary Wetland, China\",\"authors\":\"Jiahong Xi, Xihuang Zhong, Tong Zhang, Yu Zhen, Li Zou, Xueyan Jiang\",\"doi\":\"10.1007/s12237-024-01338-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Estuarine wetlands are characterized by high biodiversity and active fluctuations in redox-sensitive metals (RSMs). In this study, sediment samples were collected from two sites, one with and one without vegetation, in the Yellow River Estuary Wetland (YREW). Active forms of Fe, Mn, and U were extracted using Tessier’s sequential extraction method, the bacterial community was analyzed through high-throughput sequencing, and the impact of the community on the RSMs was evaluated. The results indicated that the high nutrient content generated by vegetation withering had a positive effect on bacterial biodiversity, which led to high biomass and a wide variety of species in the sediments. Redox conditions and nutrient levels were the main factors influencing bacterial community structure. Under reducing conditions, genera such as <i>Desulfococcus</i> and <i>Desulfosarcina</i> were the main bacteria mediating the reduction of active Fe and Mn. Bacteria in genera such as <i>Desulfatiglans</i> and <i>Desulfotomaculum</i> were the main bacteria mediating the reduction of active U. These bacteria may result in obvious changes in the release of Fe, Mn, and U from salt marshes to nearshore regions. Our results can help to elucidate the interactions of bacteria and RSMs.</p>\",\"PeriodicalId\":11921,\"journal\":{\"name\":\"Estuaries and Coasts\",\"volume\":\"199 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Estuaries and Coasts\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s12237-024-01338-7\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuaries and Coasts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12237-024-01338-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Interactions Between Bacteria and Several Redox-Sensitive Metals (Fe, Mn, U) in the Sediments of the Yellow River Estuary Wetland, China
Estuarine wetlands are characterized by high biodiversity and active fluctuations in redox-sensitive metals (RSMs). In this study, sediment samples were collected from two sites, one with and one without vegetation, in the Yellow River Estuary Wetland (YREW). Active forms of Fe, Mn, and U were extracted using Tessier’s sequential extraction method, the bacterial community was analyzed through high-throughput sequencing, and the impact of the community on the RSMs was evaluated. The results indicated that the high nutrient content generated by vegetation withering had a positive effect on bacterial biodiversity, which led to high biomass and a wide variety of species in the sediments. Redox conditions and nutrient levels were the main factors influencing bacterial community structure. Under reducing conditions, genera such as Desulfococcus and Desulfosarcina were the main bacteria mediating the reduction of active Fe and Mn. Bacteria in genera such as Desulfatiglans and Desulfotomaculum were the main bacteria mediating the reduction of active U. These bacteria may result in obvious changes in the release of Fe, Mn, and U from salt marshes to nearshore regions. Our results can help to elucidate the interactions of bacteria and RSMs.
期刊介绍:
Estuaries and Coasts is the journal of the Coastal and Estuarine Research Federation (CERF). Begun in 1977 as Chesapeake Science, the journal has gradually expanded its scope and circulation. Today, the journal publishes scholarly manuscripts on estuarine and near coastal ecosystems at the interface between the land and the sea where there are tidal fluctuations or sea water is diluted by fresh water. The interface is broadly defined to include estuaries and nearshore coastal waters including lagoons, wetlands, tidal fresh water, shores and beaches, but not the continental shelf. The journal covers research on physical, chemical, geological or biological processes, as well as applications to management of estuaries and coasts. The journal publishes original research findings, reviews and perspectives, techniques, comments, and management applications. Estuaries and Coasts will consider properly carried out studies that present inconclusive findings or document a failed replication of previously published work. Submissions that are primarily descriptive, strongly place-based, or only report on development of models or new methods without detailing their applications fall outside the scope of the journal.