多环孤子解决方案和复合 WKI-SP 层次结构

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xiaorui Hu, Tianle Xu, Junyang Zhang, Shoufeng Shen
{"title":"多环孤子解决方案和复合 WKI-SP 层次结构","authors":"Xiaorui Hu,&nbsp;Tianle Xu,&nbsp;Junyang Zhang,&nbsp;Shoufeng Shen","doi":"10.1111/sapm.12682","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a compound equation which is a mix of the Wadati–Konno–Ichikawa (WKI) equation and the short-pulse (SP) equation is first studied. By transforming both the independent and dependent variables in the equation, we introduce a novel hodograph transformation to convert the compound WKI–SP equation into the mKdV–SG (modified Korteweg–de Vries and sine-Gordon) equation. The multiloop soliton solutions in the form of the parametric representation are found. It is shown that the <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-loop soliton solution may be decomposed exactly into <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> separate soliton elements by using a Moloney–Hodnett-type decomposition. By virtue of the decomposed soliton solutions, the asymptotic behaviors of <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$N=2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$N=3$</annotation>\n </semantics></math> are investigated in detail. The corresponding phase shifts of each loop or antiloop soliton caused by its interaction with the other ones are calculated. Furthermore, a new hierarchy of WKI–SP-type equations possessing multiloop soliton solutions is constructed. These deduced equations are all with time-varying coefficients and the corresponding dispersion relation will have a time-dependent velocity. The whole hierarchy of equations which include the WKI-type equations, the SP-type equations, and the compound generalized WKI–SP equations, are illustrated Lax integrable. The specific equation in the hierarchy is labeled as <span></span><math>\n <semantics>\n <mrow>\n <mi>WKI</mi>\n <mtext>--</mtext>\n <msup>\n <mi>SP</mi>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>${\\rm WKI}\\text{--}{\\rm SP}^{(n,m)}$</annotation>\n </semantics></math> equation so that its Lax pairs can be directly written out with the help of <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>. A unified hodograph transformation is established to relate the compound WKI–SP hierarchy with the mKdV–SG hierarchy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiloop soliton solutions and compound WKI–SP hierarchy\",\"authors\":\"Xiaorui Hu,&nbsp;Tianle Xu,&nbsp;Junyang Zhang,&nbsp;Shoufeng Shen\",\"doi\":\"10.1111/sapm.12682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, a compound equation which is a mix of the Wadati–Konno–Ichikawa (WKI) equation and the short-pulse (SP) equation is first studied. By transforming both the independent and dependent variables in the equation, we introduce a novel hodograph transformation to convert the compound WKI–SP equation into the mKdV–SG (modified Korteweg–de Vries and sine-Gordon) equation. The multiloop soliton solutions in the form of the parametric representation are found. It is shown that the <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math>-loop soliton solution may be decomposed exactly into <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math> separate soliton elements by using a Moloney–Hodnett-type decomposition. By virtue of the decomposed soliton solutions, the asymptotic behaviors of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$N=2$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$N=3$</annotation>\\n </semantics></math> are investigated in detail. The corresponding phase shifts of each loop or antiloop soliton caused by its interaction with the other ones are calculated. Furthermore, a new hierarchy of WKI–SP-type equations possessing multiloop soliton solutions is constructed. These deduced equations are all with time-varying coefficients and the corresponding dispersion relation will have a time-dependent velocity. The whole hierarchy of equations which include the WKI-type equations, the SP-type equations, and the compound generalized WKI–SP equations, are illustrated Lax integrable. The specific equation in the hierarchy is labeled as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>WKI</mi>\\n <mtext>--</mtext>\\n <msup>\\n <mi>SP</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>${\\\\rm WKI}\\\\text{--}{\\\\rm SP}^{(n,m)}$</annotation>\\n </semantics></math> equation so that its Lax pairs can be directly written out with the help of <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math>. A unified hodograph transformation is established to relate the compound WKI–SP hierarchy with the mKdV–SG hierarchy.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文首先研究了由瓦达蒂-康诺-市川(WKI)方程和短脉冲(SP)方程混合而成的复合方程。通过转换方程中的自变量和因变量,我们引入了一种新颖的霍多图转换,将 WKI-SP 复合方程转换为 mKdV-SG(修正的 Korteweg-de Vries 和 sine-Gordon)方程。找到了参数表示形式的多环孤子解。研究表明,利用莫洛尼-霍德内特式分解法,可以将-环孤子解精确分解为独立的孤子元素。根据分解后的孤子解,对 和 的渐近行为进行了详细研究。计算了每个环孤子或反环孤子与其他孤子相互作用所引起的相应相移。此外,还构建了具有多环孤子解的 WKI-SP 型方程的新层次。这些推导出的方程都具有时变系数,相应的弥散关系将具有随时间变化的速度。包括 WKI 型方程、SP 型方程和广义 WKI-SP 复合方程在内的整个方程层级都是拉克斯可积分的。层次结构中的特定方程被标记为方程,以便其 Lax 对可以借助 和 直接写出。建立了统一的霍多图变换,将复合 WKI-SP 层次与 mKdV-SG 层次联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiloop soliton solutions and compound WKI–SP hierarchy

In this paper, a compound equation which is a mix of the Wadati–Konno–Ichikawa (WKI) equation and the short-pulse (SP) equation is first studied. By transforming both the independent and dependent variables in the equation, we introduce a novel hodograph transformation to convert the compound WKI–SP equation into the mKdV–SG (modified Korteweg–de Vries and sine-Gordon) equation. The multiloop soliton solutions in the form of the parametric representation are found. It is shown that the N $N$ -loop soliton solution may be decomposed exactly into N $N$ separate soliton elements by using a Moloney–Hodnett-type decomposition. By virtue of the decomposed soliton solutions, the asymptotic behaviors of N = 2 $N=2$ and N = 3 $N=3$ are investigated in detail. The corresponding phase shifts of each loop or antiloop soliton caused by its interaction with the other ones are calculated. Furthermore, a new hierarchy of WKI–SP-type equations possessing multiloop soliton solutions is constructed. These deduced equations are all with time-varying coefficients and the corresponding dispersion relation will have a time-dependent velocity. The whole hierarchy of equations which include the WKI-type equations, the SP-type equations, and the compound generalized WKI–SP equations, are illustrated Lax integrable. The specific equation in the hierarchy is labeled as WKI -- SP ( n , m ) ${\rm WKI}\text{--}{\rm SP}^{(n,m)}$ equation so that its Lax pairs can be directly written out with the help of n $n$ and m $m$ . A unified hodograph transformation is established to relate the compound WKI–SP hierarchy with the mKdV–SG hierarchy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信