基于区域的降水建模:时空方法

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Carolina Euán , Ying Sun , Brian J. Reich
{"title":"基于区域的降水建模:时空方法","authors":"Carolina Euán ,&nbsp;Ying Sun ,&nbsp;Brian J. Reich","doi":"10.1016/j.spasta.2024.100818","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose a new regime-based model to describe spatio-temporal dynamics of precipitation data. Precipitation is one of the most essential factors for multiple human-related activities such as agriculture production. Therefore, a detailed and accurate understanding of the rain for a given region is needed. Motivated by the different formations of precipitation systems (convective, frontal, and orographic), we proposed a hierarchical regime-based spatio-temporal model for precipitation data. We use information about the values of neighboring sites to identify such regimes, allowing spatial and temporal dependence to be different among regimes. Using the Bayesian approach with R INLA, we fit our model to the Guanajuato state (Mexico) precipitation data case study to understand the spatial and temporal dependencies of precipitation in this region. Our findings show the regime-based model’s versatility and compare it with the truncated Gaussian model.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211675324000095/pdfft?md5=34516482aa33a4d0c7231ce4614fe6c6&pid=1-s2.0-S2211675324000095-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Regime-based precipitation modeling: A spatio-temporal approach\",\"authors\":\"Carolina Euán ,&nbsp;Ying Sun ,&nbsp;Brian J. Reich\",\"doi\":\"10.1016/j.spasta.2024.100818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we propose a new regime-based model to describe spatio-temporal dynamics of precipitation data. Precipitation is one of the most essential factors for multiple human-related activities such as agriculture production. Therefore, a detailed and accurate understanding of the rain for a given region is needed. Motivated by the different formations of precipitation systems (convective, frontal, and orographic), we proposed a hierarchical regime-based spatio-temporal model for precipitation data. We use information about the values of neighboring sites to identify such regimes, allowing spatial and temporal dependence to be different among regimes. Using the Bayesian approach with R INLA, we fit our model to the Guanajuato state (Mexico) precipitation data case study to understand the spatial and temporal dependencies of precipitation in this region. Our findings show the regime-based model’s versatility and compare it with the truncated Gaussian model.</p></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211675324000095/pdfft?md5=34516482aa33a4d0c7231ce4614fe6c6&pid=1-s2.0-S2211675324000095-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675324000095\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675324000095","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的基于系统的模型来描述降水数据的时空动态。降水是农业生产等多种人类相关活动最基本的因素之一。因此,需要详细、准确地了解特定地区的降雨情况。受降水系统不同形态(对流、锋面和地貌)的启发,我们提出了一种基于系统的降水数据分层时空模型。我们利用相邻地点的降水值信息来识别降水系统,允许降水系统之间存在不同的时空依赖性。利用 R INLA 的贝叶斯方法,我们将模型拟合到瓜纳华托州(墨西哥)的降水数据案例研究中,以了解该地区降水的时空依赖性。我们的研究结果表明了基于降水过程的模型的多功能性,并将其与截断高斯模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regime-based precipitation modeling: A spatio-temporal approach

In this paper, we propose a new regime-based model to describe spatio-temporal dynamics of precipitation data. Precipitation is one of the most essential factors for multiple human-related activities such as agriculture production. Therefore, a detailed and accurate understanding of the rain for a given region is needed. Motivated by the different formations of precipitation systems (convective, frontal, and orographic), we proposed a hierarchical regime-based spatio-temporal model for precipitation data. We use information about the values of neighboring sites to identify such regimes, allowing spatial and temporal dependence to be different among regimes. Using the Bayesian approach with R INLA, we fit our model to the Guanajuato state (Mexico) precipitation data case study to understand the spatial and temporal dependencies of precipitation in this region. Our findings show the regime-based model’s versatility and compare it with the truncated Gaussian model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信