{"title":"利用自适应蝠鲼觅食优化技术为脑肿瘤分类选择特征","authors":"K. S. Neetha, Dayanand Lal Narayan","doi":"10.1007/s10044-024-01236-5","DOIUrl":null,"url":null,"abstract":"<p>Brain tumor is an anomalous growth of glial and neural cells and is considered as one of the primary causes of death worldwide. Therefore, it is essential to identify the tumor as soon as possible for reducing the mortality rate throughout the world. However, the classification of brain tumor is a challenging task due to presence of irrelevant features that cause misclassification during detection. In this research, the adaptive manta ray foraging optimization (AMRFO) is proposed for performing an effective feature selection to avoid the problem of overfitting while performing the classification. The adaptive control parameter strategy is incorporated in the AMRFO for enhancing the search process while selecting the feature subset. The linear intensity distribution information and regularization parameter-based intuitionistic fuzzy C-means algorithm namely LRIFCM is used to perform the segmentation of tumor regions. Next, LeeNET, gray-level co-occurrence matrix, local ternary pattern, histogram of gradients, and shape features are used to extract essential features from the segmented regions. Further, the attention-based long short-term memory (ALSTM) is used to classify the brain tumor types according to the features selected by AMRFO. The datasets utilized in this research study for the evaluation of AMRFO-ALSTM method are BRATS 2017, BRATS 2018, and Figshare brain datasets. Segmentation and classification are the two different evaluations examined for the AMRFO-ALSTM. The structural similarity index measure, Jaccard, dice, accuracy, and sensitivity are utilized during segmentation evaluation, while accuracy, specificity, sensitivity, precision, and F1-score are used during classification evaluation. The existing researches namely, transformer-enhanced convolutional neural network, Chan Vese (CV)-support vector machine, CV-K-nearest neighbor, deep convolutional neural network (DCNN), and salp water optimization with deep belief network are used to compare with the AMRFO-ALSTM. The accuracy of AMRFO-ALSTM for Figshare brain dataset is 99.80 which is a greater achievement when compared to the DCNN.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"59 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature selection using adaptive manta ray foraging optimization for brain tumor classification\",\"authors\":\"K. S. Neetha, Dayanand Lal Narayan\",\"doi\":\"10.1007/s10044-024-01236-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Brain tumor is an anomalous growth of glial and neural cells and is considered as one of the primary causes of death worldwide. Therefore, it is essential to identify the tumor as soon as possible for reducing the mortality rate throughout the world. However, the classification of brain tumor is a challenging task due to presence of irrelevant features that cause misclassification during detection. In this research, the adaptive manta ray foraging optimization (AMRFO) is proposed for performing an effective feature selection to avoid the problem of overfitting while performing the classification. The adaptive control parameter strategy is incorporated in the AMRFO for enhancing the search process while selecting the feature subset. The linear intensity distribution information and regularization parameter-based intuitionistic fuzzy C-means algorithm namely LRIFCM is used to perform the segmentation of tumor regions. Next, LeeNET, gray-level co-occurrence matrix, local ternary pattern, histogram of gradients, and shape features are used to extract essential features from the segmented regions. Further, the attention-based long short-term memory (ALSTM) is used to classify the brain tumor types according to the features selected by AMRFO. The datasets utilized in this research study for the evaluation of AMRFO-ALSTM method are BRATS 2017, BRATS 2018, and Figshare brain datasets. Segmentation and classification are the two different evaluations examined for the AMRFO-ALSTM. The structural similarity index measure, Jaccard, dice, accuracy, and sensitivity are utilized during segmentation evaluation, while accuracy, specificity, sensitivity, precision, and F1-score are used during classification evaluation. The existing researches namely, transformer-enhanced convolutional neural network, Chan Vese (CV)-support vector machine, CV-K-nearest neighbor, deep convolutional neural network (DCNN), and salp water optimization with deep belief network are used to compare with the AMRFO-ALSTM. The accuracy of AMRFO-ALSTM for Figshare brain dataset is 99.80 which is a greater achievement when compared to the DCNN.</p>\",\"PeriodicalId\":54639,\"journal\":{\"name\":\"Pattern Analysis and Applications\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Analysis and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10044-024-01236-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01236-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Feature selection using adaptive manta ray foraging optimization for brain tumor classification
Brain tumor is an anomalous growth of glial and neural cells and is considered as one of the primary causes of death worldwide. Therefore, it is essential to identify the tumor as soon as possible for reducing the mortality rate throughout the world. However, the classification of brain tumor is a challenging task due to presence of irrelevant features that cause misclassification during detection. In this research, the adaptive manta ray foraging optimization (AMRFO) is proposed for performing an effective feature selection to avoid the problem of overfitting while performing the classification. The adaptive control parameter strategy is incorporated in the AMRFO for enhancing the search process while selecting the feature subset. The linear intensity distribution information and regularization parameter-based intuitionistic fuzzy C-means algorithm namely LRIFCM is used to perform the segmentation of tumor regions. Next, LeeNET, gray-level co-occurrence matrix, local ternary pattern, histogram of gradients, and shape features are used to extract essential features from the segmented regions. Further, the attention-based long short-term memory (ALSTM) is used to classify the brain tumor types according to the features selected by AMRFO. The datasets utilized in this research study for the evaluation of AMRFO-ALSTM method are BRATS 2017, BRATS 2018, and Figshare brain datasets. Segmentation and classification are the two different evaluations examined for the AMRFO-ALSTM. The structural similarity index measure, Jaccard, dice, accuracy, and sensitivity are utilized during segmentation evaluation, while accuracy, specificity, sensitivity, precision, and F1-score are used during classification evaluation. The existing researches namely, transformer-enhanced convolutional neural network, Chan Vese (CV)-support vector machine, CV-K-nearest neighbor, deep convolutional neural network (DCNN), and salp water optimization with deep belief network are used to compare with the AMRFO-ALSTM. The accuracy of AMRFO-ALSTM for Figshare brain dataset is 99.80 which is a greater achievement when compared to the DCNN.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.