利用开放源代码加速有限元边界积分代码的开发

IF 3.5 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Niklas Wingren;Daniel Sjöberg
{"title":"利用开放源代码加速有限元边界积分代码的开发","authors":"Niklas Wingren;Daniel Sjöberg","doi":"10.1109/OJAP.2024.3374350","DOIUrl":null,"url":null,"abstract":"Open-source software has been highly influential on software development in many fields, and also has a history within computational electromagnetics. With large amounts of open-source code available, both from within computational electromagnetics and from other fields, new combinations can be made by using already existing code packages. This can be especially beneficial to developers who do not otherwise have access to a substantial codebase. In this article we describe how a finite element-boundary integral code using the adaptive cross approximation was developed by combining different existing open-source software packages with new code in Python. We provide a brief overview of the numerical methods used, but our focus is on the implementation and insights that might be useful to others who could benefit from using open-source software in their work. Three numerical examples are also presented to demonstrate accuracy, performance and use of complex materials. Our code is provided at github.com/nwingren/fe2ms both to demonstrate how the open-source packages were combined in practice, but also for those who wish to test the code themselves.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10462479","citationCount":"0","resultStr":"{\"title\":\"Using Open Source to Accelerate Development of a Finite Element-Boundary Integral Code\",\"authors\":\"Niklas Wingren;Daniel Sjöberg\",\"doi\":\"10.1109/OJAP.2024.3374350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Open-source software has been highly influential on software development in many fields, and also has a history within computational electromagnetics. With large amounts of open-source code available, both from within computational electromagnetics and from other fields, new combinations can be made by using already existing code packages. This can be especially beneficial to developers who do not otherwise have access to a substantial codebase. In this article we describe how a finite element-boundary integral code using the adaptive cross approximation was developed by combining different existing open-source software packages with new code in Python. We provide a brief overview of the numerical methods used, but our focus is on the implementation and insights that might be useful to others who could benefit from using open-source software in their work. Three numerical examples are also presented to demonstrate accuracy, performance and use of complex materials. Our code is provided at github.com/nwingren/fe2ms both to demonstrate how the open-source packages were combined in practice, but also for those who wish to test the code themselves.\",\"PeriodicalId\":34267,\"journal\":{\"name\":\"IEEE Open Journal of Antennas and Propagation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10462479\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Antennas and Propagation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10462479/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10462479/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

开放源码软件对许多领域的软件开发都有很大影响,在计算电磁学领域也有历史。计算电磁学和其他领域都有大量的开放源代码,因此可以通过使用已有的代码包进行新的组合。这对那些无法使用大量代码库的开发人员尤其有利。在本文中,我们将介绍如何通过将不同的现有开源软件包与 Python 中的新代码相结合,开发出使用自适应交叉近似的有限元边界积分代码。我们简要介绍了所使用的数值方法,但重点在于实现方法和见解,这可能对在工作中使用开源软件的其他人有所帮助。我们还介绍了三个数值示例,以演示复杂材料的准确性、性能和使用。我们的代码在 github.com/nwingren/fe2ms 上提供,既展示了开源软件包在实践中是如何结合的,也为那些希望自己测试代码的人提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Open Source to Accelerate Development of a Finite Element-Boundary Integral Code
Open-source software has been highly influential on software development in many fields, and also has a history within computational electromagnetics. With large amounts of open-source code available, both from within computational electromagnetics and from other fields, new combinations can be made by using already existing code packages. This can be especially beneficial to developers who do not otherwise have access to a substantial codebase. In this article we describe how a finite element-boundary integral code using the adaptive cross approximation was developed by combining different existing open-source software packages with new code in Python. We provide a brief overview of the numerical methods used, but our focus is on the implementation and insights that might be useful to others who could benefit from using open-source software in their work. Three numerical examples are also presented to demonstrate accuracy, performance and use of complex materials. Our code is provided at github.com/nwingren/fe2ms both to demonstrate how the open-source packages were combined in practice, but also for those who wish to test the code themselves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信