"它对我也有用":在线社区如何影响软件开发人员对人工智能代码生成工具的信任

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ruijia Cheng, Ruotong Wang, Thomas Zimmermann, Denae Ford
{"title":"\"它对我也有用\":在线社区如何影响软件开发人员对人工智能代码生成工具的信任","authors":"Ruijia Cheng, Ruotong Wang, Thomas Zimmermann, Denae Ford","doi":"10.1145/3651990","DOIUrl":null,"url":null,"abstract":"<p>While revolutionary AI-powered code generation tools have been rising rapidly, we know little about how and how to help software developers form appropriate trust in those AI tools. Through a two-phase formative study, we investigate how online communities shape developers’ trust in AI tools and how we can leverage community features to facilitate appropriate user trust. Through interviewing 17 developers, we find that developers collectively make sense of AI tools using the experiences shared by community members and leverage community signals to evaluate AI suggestions. We then surface design opportunities and conduct 11 design probe sessions to explore the design space of using community features to support user trust in AI code generation systems. We synthesize our findings and extend an existing model of user trust in AI technologies with sociotechnical factors. We map out the design considerations for integrating user community into the AI code generation experience.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“It would work for me too”: How Online Communities Shape Software Developers’ Trust in AI-Powered Code Generation Tools\",\"authors\":\"Ruijia Cheng, Ruotong Wang, Thomas Zimmermann, Denae Ford\",\"doi\":\"10.1145/3651990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While revolutionary AI-powered code generation tools have been rising rapidly, we know little about how and how to help software developers form appropriate trust in those AI tools. Through a two-phase formative study, we investigate how online communities shape developers’ trust in AI tools and how we can leverage community features to facilitate appropriate user trust. Through interviewing 17 developers, we find that developers collectively make sense of AI tools using the experiences shared by community members and leverage community signals to evaluate AI suggestions. We then surface design opportunities and conduct 11 design probe sessions to explore the design space of using community features to support user trust in AI code generation systems. We synthesize our findings and extend an existing model of user trust in AI technologies with sociotechnical factors. We map out the design considerations for integrating user community into the AI code generation experience.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3651990\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3651990","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

虽然革命性的人工智能代码生成工具迅速崛起,但我们对如何帮助软件开发人员对这些人工智能工具形成适当的信任却知之甚少。通过一项分两个阶段进行的形成性研究,我们调查了在线社区如何形成开发人员对人工智能工具的信任,以及我们如何利用社区功能来促进用户的适当信任。通过对 17 名开发人员的访谈,我们发现开发人员会利用社区成员分享的经验来共同理解人工智能工具,并利用社区信号来评估人工智能建议。然后,我们提出了设计机会,并进行了 11 次设计探究会议,以探索使用社区功能支持人工智能代码生成系统中用户信任的设计空间。我们对研究结果进行了综合,并利用社会技术因素扩展了用户对人工智能技术信任度的现有模型。我们列出了将用户社区融入人工智能代码生成体验的设计考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
“It would work for me too”: How Online Communities Shape Software Developers’ Trust in AI-Powered Code Generation Tools

While revolutionary AI-powered code generation tools have been rising rapidly, we know little about how and how to help software developers form appropriate trust in those AI tools. Through a two-phase formative study, we investigate how online communities shape developers’ trust in AI tools and how we can leverage community features to facilitate appropriate user trust. Through interviewing 17 developers, we find that developers collectively make sense of AI tools using the experiences shared by community members and leverage community signals to evaluate AI suggestions. We then surface design opportunities and conduct 11 design probe sessions to explore the design space of using community features to support user trust in AI code generation systems. We synthesize our findings and extend an existing model of user trust in AI technologies with sociotechnical factors. We map out the design considerations for integrating user community into the AI code generation experience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信