求解非域上的多项式系统及其在模态多项式因式分解中的应用

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Sayak Chakrabarti, Ashish Dwivedi, Nitin Saxena
{"title":"求解非域上的多项式系统及其在模态多项式因式分解中的应用","authors":"Sayak Chakrabarti,&nbsp;Ashish Dwivedi,&nbsp;Nitin Saxena","doi":"10.1016/j.jsc.2024.102314","DOIUrl":null,"url":null,"abstract":"<div><p>We study the problem of solving a system of <em>m</em> polynomials in <em>n</em> variables over the ring of integers modulo a prime-power <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>. The problem over finite fields is well studied in varied parameter settings. For small characteristic <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span>, Lokshtanov et al. (SODA'17) initiated the study, for degree <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> systems, to improve the exhaustive search complexity of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>⋅</mo><mtext>poly</mtext><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> to <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>0.8765</mn><mi>n</mi></mrow></msup><mo>)</mo><mo>⋅</mo><mtext>poly</mtext><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>; which currently is improved to <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>0.6943</mn><mi>n</mi></mrow></msup><mo>)</mo><mo>⋅</mo><mtext>poly</mtext><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> in Dinur (SODA'21). For large <em>p</em> but constant <em>n</em>, Huang and Wong (FOCS'96) gave a randomized <span><math><mtext>poly</mtext><mo>(</mo><mi>d</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>log</mi><mo>⁡</mo><mi>p</mi><mo>)</mo></math></span> time algorithm. Note that for growing <em>n</em>, system-solving is known to be <em>intractable</em> even with <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> and degree <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>.</p><p>We devise a randomized <span><math><mtext>poly</mtext><mo>(</mo><mi>d</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>log</mi><mo>⁡</mo><mi>p</mi><mo>)</mo></math></span>-time algorithm to find a root of a given system of <em>m</em> integral polynomials of degrees bounded by <em>d</em>, in <em>n</em> variables, modulo a prime power <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>; when <span><math><mi>n</mi><mo>+</mo><mi>k</mi></math></span> is constant. In a way, we extend the efficient algorithm of Huang and Wong (FOCS'96) for system-solving over Galois fields (i.e., characteristic <em>p</em>) to system-solving over Galois <em>rings</em> (i.e., characteristic <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>); when <span><math><mi>k</mi><mo>&gt;</mo><mn>1</mn></math></span> is constant. The challenge here is to find a lift of <em>singular</em> <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-roots (exponentially many); as there is no efficient general way known in algebraic-geometry for resolving singularities.</p><p>Our algorithm has applications to factoring univariate polynomials over Galois rings. Given <span><math><mi>f</mi><mo>∈</mo><mi>Z</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> and a prime-power <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> (<span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>), finding factors of <span><math><mi>f</mi><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> has a curious state-of-the-art. It is solved for large <em>k</em> by <em>p</em>-adic factoring algorithms (von zur Gathen, Hartlieb, ISSAC'96); but unsolved for small <em>k</em>. In particular, no nontrivial factoring method is known for <span><math><mi>k</mi><mo>≥</mo><mn>5</mn></math></span> (Dwivedi, Mittal, Saxena, ISSAC'19). One issue is that degree-<em>δ</em> factors of <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> could be <em>exponentially</em> many, as soon as <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>. We give the first randomized poly<span><math><mo>(</mo><mi>deg</mi><mo>⁡</mo><mo>(</mo><mi>f</mi><mo>)</mo><mo>,</mo><mi>log</mi><mo>⁡</mo><mi>p</mi><mo>)</mo></math></span>-time algorithm to find a degree-<em>δ</em> factor of <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>, when <span><math><mi>k</mi><mo>+</mo><mi>δ</mi></math></span> is constant. Our method has potential application in algebraic coding theory. In particular, extending algebraic geometric and Reed-Solomon codes to Galois rings could enable new and improved bounds on their underlying efficiency parameters.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving polynomial systems over non-fields and applications to modular polynomial factoring\",\"authors\":\"Sayak Chakrabarti,&nbsp;Ashish Dwivedi,&nbsp;Nitin Saxena\",\"doi\":\"10.1016/j.jsc.2024.102314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the problem of solving a system of <em>m</em> polynomials in <em>n</em> variables over the ring of integers modulo a prime-power <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>. The problem over finite fields is well studied in varied parameter settings. For small characteristic <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span>, Lokshtanov et al. (SODA'17) initiated the study, for degree <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> systems, to improve the exhaustive search complexity of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>⋅</mo><mtext>poly</mtext><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> to <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>0.8765</mn><mi>n</mi></mrow></msup><mo>)</mo><mo>⋅</mo><mtext>poly</mtext><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>; which currently is improved to <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>0.6943</mn><mi>n</mi></mrow></msup><mo>)</mo><mo>⋅</mo><mtext>poly</mtext><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> in Dinur (SODA'21). For large <em>p</em> but constant <em>n</em>, Huang and Wong (FOCS'96) gave a randomized <span><math><mtext>poly</mtext><mo>(</mo><mi>d</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>log</mi><mo>⁡</mo><mi>p</mi><mo>)</mo></math></span> time algorithm. Note that for growing <em>n</em>, system-solving is known to be <em>intractable</em> even with <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> and degree <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>.</p><p>We devise a randomized <span><math><mtext>poly</mtext><mo>(</mo><mi>d</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>log</mi><mo>⁡</mo><mi>p</mi><mo>)</mo></math></span>-time algorithm to find a root of a given system of <em>m</em> integral polynomials of degrees bounded by <em>d</em>, in <em>n</em> variables, modulo a prime power <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>; when <span><math><mi>n</mi><mo>+</mo><mi>k</mi></math></span> is constant. In a way, we extend the efficient algorithm of Huang and Wong (FOCS'96) for system-solving over Galois fields (i.e., characteristic <em>p</em>) to system-solving over Galois <em>rings</em> (i.e., characteristic <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>); when <span><math><mi>k</mi><mo>&gt;</mo><mn>1</mn></math></span> is constant. The challenge here is to find a lift of <em>singular</em> <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-roots (exponentially many); as there is no efficient general way known in algebraic-geometry for resolving singularities.</p><p>Our algorithm has applications to factoring univariate polynomials over Galois rings. Given <span><math><mi>f</mi><mo>∈</mo><mi>Z</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> and a prime-power <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> (<span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>), finding factors of <span><math><mi>f</mi><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> has a curious state-of-the-art. It is solved for large <em>k</em> by <em>p</em>-adic factoring algorithms (von zur Gathen, Hartlieb, ISSAC'96); but unsolved for small <em>k</em>. In particular, no nontrivial factoring method is known for <span><math><mi>k</mi><mo>≥</mo><mn>5</mn></math></span> (Dwivedi, Mittal, Saxena, ISSAC'19). One issue is that degree-<em>δ</em> factors of <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> could be <em>exponentially</em> many, as soon as <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>. We give the first randomized poly<span><math><mo>(</mo><mi>deg</mi><mo>⁡</mo><mo>(</mo><mi>f</mi><mo>)</mo><mo>,</mo><mi>log</mi><mo>⁡</mo><mi>p</mi><mo>)</mo></math></span>-time algorithm to find a degree-<em>δ</em> factor of <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>, when <span><math><mi>k</mi><mo>+</mo><mi>δ</mi></math></span> is constant. Our method has potential application in algebraic coding theory. In particular, extending algebraic geometric and Reed-Solomon codes to Galois rings could enable new and improved bounds on their underlying efficiency parameters.</p></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S074771712400018X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S074771712400018X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的问题是求解整数环上的素幂多项式系统。有限域上的问题在各种参数设置下都有很好的研究。对于小特征,Lokshtanov 等人(SODA'17)发起了针对度系统的研究,以提高到的穷举搜索复杂度;目前,Dinur(SODA'21)已将其提高到。对于大而恒定的 , Huang 和 Wong (FOCS'96)给出了一种随机时间算法。需要注意的是,对于不断增长的 ,已知系统求解与 和 阶数相等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving polynomial systems over non-fields and applications to modular polynomial factoring

We study the problem of solving a system of m polynomials in n variables over the ring of integers modulo a prime-power pk. The problem over finite fields is well studied in varied parameter settings. For small characteristic p=2, Lokshtanov et al. (SODA'17) initiated the study, for degree d=2 systems, to improve the exhaustive search complexity of O(2n)poly(m,n) to O(20.8765n)poly(m,n); which currently is improved to O(20.6943n)poly(m,n) in Dinur (SODA'21). For large p but constant n, Huang and Wong (FOCS'96) gave a randomized poly(d,m,logp) time algorithm. Note that for growing n, system-solving is known to be intractable even with p=2 and degree d=2.

We devise a randomized poly(d,m,logp)-time algorithm to find a root of a given system of m integral polynomials of degrees bounded by d, in n variables, modulo a prime power pk; when n+k is constant. In a way, we extend the efficient algorithm of Huang and Wong (FOCS'96) for system-solving over Galois fields (i.e., characteristic p) to system-solving over Galois rings (i.e., characteristic pk); when k>1 is constant. The challenge here is to find a lift of singular Fp-roots (exponentially many); as there is no efficient general way known in algebraic-geometry for resolving singularities.

Our algorithm has applications to factoring univariate polynomials over Galois rings. Given fZ[x] and a prime-power pk (k2), finding factors of fmodpk has a curious state-of-the-art. It is solved for large k by p-adic factoring algorithms (von zur Gathen, Hartlieb, ISSAC'96); but unsolved for small k. In particular, no nontrivial factoring method is known for k5 (Dwivedi, Mittal, Saxena, ISSAC'19). One issue is that degree-δ factors of f(x)modpk could be exponentially many, as soon as k2. We give the first randomized poly(deg(f),logp)-time algorithm to find a degree-δ factor of f(x)modpk, when k+δ is constant. Our method has potential application in algebraic coding theory. In particular, extending algebraic geometric and Reed-Solomon codes to Galois rings could enable new and improved bounds on their underlying efficiency parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信