Diego R. Guevara-Torres, José M. Facelli, Bertram Ostendorf
{"title":"多季节哨兵-2 图像在草地状况分类和绘图方面的功效","authors":"Diego R. Guevara-Torres, José M. Facelli, Bertram Ostendorf","doi":"10.1155/2024/6668228","DOIUrl":null,"url":null,"abstract":"Assessing the condition of ecosystems is imperative for understanding their degree of degradation and managing their conservation. The increasing availability of remote sensing products offers unprecedented opportunities for mapping vegetation with high detail and accuracy. However, mapping complex ecosystems, like grasslands, remains challenging due to their heterogeneity in vegetation composition and structure. Furthermore, degraded ecosystems affected by invasive vegetation present different condition levels within vegetation classes, limiting the accuracy of classifications and condition assessment. Here, we evaluated the capacity of Sentinel-2 multispectral time series imagery as an input for classifying different levels of cover within a vegetation class to detect the subtle differences needed to assess the condition of degraded ecosystems. Our study was conducted in the iron-grasslands of South Australia, a perennial tussock grassland dominated by iron-grasses (<i>Lomandra</i> spp.) and severely affected by invasive annual grasses. We developed random forest models to discriminate classes defined by the cover of iron-grasses, wild oats (<i>Avena barbata</i>), and woodland (training points = 250). We tested the importance of data seasonality, spatial resolution, spectral bands, and vegetation indices. The combination of spatial, temporal, and spectral detail produced the best classification results. Random forest classifications performed best at 10 m resolution, suggesting that detailed resolution outweighs spectral detail for discriminating vegetation patterns in systems with high spatial heterogeneity. The model at 10 m resolution combining all periods and all variables (spectral bands and vegetation indices) produced a mean kappa coefficient of 56% and a mean overall accuracy of 67%. The dry season imagery and vegetation indices emerged as the most informative, suggesting that vegetation classes presented different phenological properties critical for their discrimination. Our study contributes to mapping complex ecosystems, facilitating the discrimination of different levels of condition in grasslands degraded by invasive species, and thus benefits the conservation of native grasslands and other ecosystems.","PeriodicalId":48792,"journal":{"name":"Journal of Sensors","volume":"276 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy of Multiseason Sentinel-2 Imagery for Classifying and Mapping Grassland Condition\",\"authors\":\"Diego R. Guevara-Torres, José M. Facelli, Bertram Ostendorf\",\"doi\":\"10.1155/2024/6668228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assessing the condition of ecosystems is imperative for understanding their degree of degradation and managing their conservation. The increasing availability of remote sensing products offers unprecedented opportunities for mapping vegetation with high detail and accuracy. However, mapping complex ecosystems, like grasslands, remains challenging due to their heterogeneity in vegetation composition and structure. Furthermore, degraded ecosystems affected by invasive vegetation present different condition levels within vegetation classes, limiting the accuracy of classifications and condition assessment. Here, we evaluated the capacity of Sentinel-2 multispectral time series imagery as an input for classifying different levels of cover within a vegetation class to detect the subtle differences needed to assess the condition of degraded ecosystems. Our study was conducted in the iron-grasslands of South Australia, a perennial tussock grassland dominated by iron-grasses (<i>Lomandra</i> spp.) and severely affected by invasive annual grasses. We developed random forest models to discriminate classes defined by the cover of iron-grasses, wild oats (<i>Avena barbata</i>), and woodland (training points = 250). We tested the importance of data seasonality, spatial resolution, spectral bands, and vegetation indices. The combination of spatial, temporal, and spectral detail produced the best classification results. Random forest classifications performed best at 10 m resolution, suggesting that detailed resolution outweighs spectral detail for discriminating vegetation patterns in systems with high spatial heterogeneity. The model at 10 m resolution combining all periods and all variables (spectral bands and vegetation indices) produced a mean kappa coefficient of 56% and a mean overall accuracy of 67%. The dry season imagery and vegetation indices emerged as the most informative, suggesting that vegetation classes presented different phenological properties critical for their discrimination. Our study contributes to mapping complex ecosystems, facilitating the discrimination of different levels of condition in grasslands degraded by invasive species, and thus benefits the conservation of native grasslands and other ecosystems.\",\"PeriodicalId\":48792,\"journal\":{\"name\":\"Journal of Sensors\",\"volume\":\"276 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sensors\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6668228\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensors","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/6668228","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Efficacy of Multiseason Sentinel-2 Imagery for Classifying and Mapping Grassland Condition
Assessing the condition of ecosystems is imperative for understanding their degree of degradation and managing their conservation. The increasing availability of remote sensing products offers unprecedented opportunities for mapping vegetation with high detail and accuracy. However, mapping complex ecosystems, like grasslands, remains challenging due to their heterogeneity in vegetation composition and structure. Furthermore, degraded ecosystems affected by invasive vegetation present different condition levels within vegetation classes, limiting the accuracy of classifications and condition assessment. Here, we evaluated the capacity of Sentinel-2 multispectral time series imagery as an input for classifying different levels of cover within a vegetation class to detect the subtle differences needed to assess the condition of degraded ecosystems. Our study was conducted in the iron-grasslands of South Australia, a perennial tussock grassland dominated by iron-grasses (Lomandra spp.) and severely affected by invasive annual grasses. We developed random forest models to discriminate classes defined by the cover of iron-grasses, wild oats (Avena barbata), and woodland (training points = 250). We tested the importance of data seasonality, spatial resolution, spectral bands, and vegetation indices. The combination of spatial, temporal, and spectral detail produced the best classification results. Random forest classifications performed best at 10 m resolution, suggesting that detailed resolution outweighs spectral detail for discriminating vegetation patterns in systems with high spatial heterogeneity. The model at 10 m resolution combining all periods and all variables (spectral bands and vegetation indices) produced a mean kappa coefficient of 56% and a mean overall accuracy of 67%. The dry season imagery and vegetation indices emerged as the most informative, suggesting that vegetation classes presented different phenological properties critical for their discrimination. Our study contributes to mapping complex ecosystems, facilitating the discrimination of different levels of condition in grasslands degraded by invasive species, and thus benefits the conservation of native grasslands and other ecosystems.
Journal of SensorsENGINEERING, ELECTRICAL & ELECTRONIC-INSTRUMENTS & INSTRUMENTATION
CiteScore
4.10
自引率
5.30%
发文量
833
审稿时长
18 weeks
期刊介绍:
Journal of Sensors publishes papers related to all aspects of sensors, from their theory and design, to the applications of complete sensing devices. All classes of sensor are covered, including acoustic, biological, chemical, electronic, electromagnetic (including optical), mechanical, proximity, and thermal. Submissions relating to wearable, implantable, and remote sensing devices are encouraged.
Envisaged applications include, but are not limited to:
-Medical, healthcare, and lifestyle monitoring
-Environmental and atmospheric monitoring
-Sensing for engineering, manufacturing and processing industries
-Transportation, navigation, and geolocation
-Vision, perception, and sensing for robots and UAVs
The journal welcomes articles that, as well as the sensor technology itself, consider the practical aspects of modern sensor implementation, such as networking, communications, signal processing, and data management.
As well as original research, the Journal of Sensors also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.