Richard Ravasz, Miroslav Potočný, Daniel Arbet, Martin Kováč, David Maljar, Lukáš Nagy, Viera Stopjaková
{"title":"评估超低电压放大器 ASIC 的测量方法","authors":"Richard Ravasz, Miroslav Potočný, Daniel Arbet, Martin Kováč, David Maljar, Lukáš Nagy, Viera Stopjaková","doi":"10.2478/msr-2024-0002","DOIUrl":null,"url":null,"abstract":"This article presents measurement circuits and a test board developed for the experimental evaluation of prototype chip samples of the Fully Differential Difference Amplifier (FDDA). The Device Under Test (DUT) is an ultra low-voltage, high performance integrated FDDA designed and fabricated in 130nm CMOS technology. The power supply voltage of the FDDA is 400mV. The measurement circuits were implemented on the test board with the fabricated FDDA chip to evaluate its main parameters and properties. In this work, we focus on evaluation of the following parameters: the input offset voltage, the common-mode rejection ratio, and the power supply rejection ratio. The test board was developed and verified. The test board error was measured to be 38.73mV. The offset voltage of the FDDA was −0.66mV. The measured FDDA gain and gain bandwidth were 48dB and 550kHz, respectively. In addition to the measurement board, a graphical user interface was also developed to simplify the control of the device under test during measurements.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"55 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement Approach to Evaluation of Ultra-Low-Voltage Amplifier ASICs\",\"authors\":\"Richard Ravasz, Miroslav Potočný, Daniel Arbet, Martin Kováč, David Maljar, Lukáš Nagy, Viera Stopjaková\",\"doi\":\"10.2478/msr-2024-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents measurement circuits and a test board developed for the experimental evaluation of prototype chip samples of the Fully Differential Difference Amplifier (FDDA). The Device Under Test (DUT) is an ultra low-voltage, high performance integrated FDDA designed and fabricated in 130nm CMOS technology. The power supply voltage of the FDDA is 400mV. The measurement circuits were implemented on the test board with the fabricated FDDA chip to evaluate its main parameters and properties. In this work, we focus on evaluation of the following parameters: the input offset voltage, the common-mode rejection ratio, and the power supply rejection ratio. The test board was developed and verified. The test board error was measured to be 38.73mV. The offset voltage of the FDDA was −0.66mV. The measured FDDA gain and gain bandwidth were 48dB and 550kHz, respectively. In addition to the measurement board, a graphical user interface was also developed to simplify the control of the device under test during measurements.\",\"PeriodicalId\":49848,\"journal\":{\"name\":\"Measurement Science Review\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/msr-2024-0002\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/msr-2024-0002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Measurement Approach to Evaluation of Ultra-Low-Voltage Amplifier ASICs
This article presents measurement circuits and a test board developed for the experimental evaluation of prototype chip samples of the Fully Differential Difference Amplifier (FDDA). The Device Under Test (DUT) is an ultra low-voltage, high performance integrated FDDA designed and fabricated in 130nm CMOS technology. The power supply voltage of the FDDA is 400mV. The measurement circuits were implemented on the test board with the fabricated FDDA chip to evaluate its main parameters and properties. In this work, we focus on evaluation of the following parameters: the input offset voltage, the common-mode rejection ratio, and the power supply rejection ratio. The test board was developed and verified. The test board error was measured to be 38.73mV. The offset voltage of the FDDA was −0.66mV. The measured FDDA gain and gain bandwidth were 48dB and 550kHz, respectively. In addition to the measurement board, a graphical user interface was also developed to simplify the control of the device under test during measurements.
期刊介绍:
- theory of measurement - mathematical processing of measured data - measurement uncertainty minimisation - statistical methods in data evaluation and modelling - measurement as an interdisciplinary activity - measurement science in education - medical imaging methods, image processing - biosignal measurement, processing and analysis - model based biomeasurements - neural networks in biomeasurement - telemeasurement in biomedicine - measurement in nanomedicine - measurement of basic physical quantities - magnetic and electric fields measurements - measurement of geometrical and mechanical quantities - optical measuring methods - electromagnetic compatibility - measurement in material science