Lucas M Marques, Sara Pinto Barbosa, Anna Carolyna Gianlorenço, K Pacheco-Barrios, Daniel R Souza, Denise Matheus, Linamara Battistella, Marcel Simis, Felipe Fregni
{"title":"静息态脑电图是脑卒中患者适应不良运动功能和抑郁特征的生物标记。","authors":"Lucas M Marques, Sara Pinto Barbosa, Anna Carolyna Gianlorenço, K Pacheco-Barrios, Daniel R Souza, Denise Matheus, Linamara Battistella, Marcel Simis, Felipe Fregni","doi":"10.1177/15500594241234394","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> Investigate the relationship between resting-state EEG-measured brain oscillations and clinical and demographic measures in Stroke patients. <b>Methods:</b> We performed a cross-sectional analysis of a cohort study (DEFINE cohort), Stroke arm, with 85 patients, considering demographic, clinical, and stroke characteristics. Resting-state EEG relative power from delta, theta, alpha, and beta oscillations were measured from the central region. Multivariate regression models were used for both affected and non-affected hemispheres. <b>Results:</b> Motor function was negatively associated with Delta and Theta oscillations, while positively associated with Alpha oscillations (both hemispheres). Similarly, cognition levels measured were negatively associated with Delta activity. Depression levels were negatively associated with Alpha activity specifically in the affected hemisphere, while positively associated with Beta activity in both hemispheres. Regarding pain measures, no significant association was observed, while CPM measure showed a positive association with Alpha activity in the non-affected hemisphere. Finally, we found that theta/alpha ratio was negatively associated with motor function and CPM scores. <b>Conclusion:</b> The results lead us to propose a framework for brain oscillations in stroke, whereas Delta and Beta would represent disrupted mal-adaptive brain plasticity and Theta and Alpha would represent compensatory and functional brain oscillations for motor and sensory deficits in stroke, respectively.</p>","PeriodicalId":93940,"journal":{"name":"Clinical EEG and neuroscience","volume":" ","pages":"496-507"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resting-state EEG as Biomarker of Maladaptive Motor Function and Depressive Profile in Stroke Patients.\",\"authors\":\"Lucas M Marques, Sara Pinto Barbosa, Anna Carolyna Gianlorenço, K Pacheco-Barrios, Daniel R Souza, Denise Matheus, Linamara Battistella, Marcel Simis, Felipe Fregni\",\"doi\":\"10.1177/15500594241234394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> Investigate the relationship between resting-state EEG-measured brain oscillations and clinical and demographic measures in Stroke patients. <b>Methods:</b> We performed a cross-sectional analysis of a cohort study (DEFINE cohort), Stroke arm, with 85 patients, considering demographic, clinical, and stroke characteristics. Resting-state EEG relative power from delta, theta, alpha, and beta oscillations were measured from the central region. Multivariate regression models were used for both affected and non-affected hemispheres. <b>Results:</b> Motor function was negatively associated with Delta and Theta oscillations, while positively associated with Alpha oscillations (both hemispheres). Similarly, cognition levels measured were negatively associated with Delta activity. Depression levels were negatively associated with Alpha activity specifically in the affected hemisphere, while positively associated with Beta activity in both hemispheres. Regarding pain measures, no significant association was observed, while CPM measure showed a positive association with Alpha activity in the non-affected hemisphere. Finally, we found that theta/alpha ratio was negatively associated with motor function and CPM scores. <b>Conclusion:</b> The results lead us to propose a framework for brain oscillations in stroke, whereas Delta and Beta would represent disrupted mal-adaptive brain plasticity and Theta and Alpha would represent compensatory and functional brain oscillations for motor and sensory deficits in stroke, respectively.</p>\",\"PeriodicalId\":93940,\"journal\":{\"name\":\"Clinical EEG and neuroscience\",\"volume\":\" \",\"pages\":\"496-507\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical EEG and neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15500594241234394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15500594241234394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Resting-state EEG as Biomarker of Maladaptive Motor Function and Depressive Profile in Stroke Patients.
Objective: Investigate the relationship between resting-state EEG-measured brain oscillations and clinical and demographic measures in Stroke patients. Methods: We performed a cross-sectional analysis of a cohort study (DEFINE cohort), Stroke arm, with 85 patients, considering demographic, clinical, and stroke characteristics. Resting-state EEG relative power from delta, theta, alpha, and beta oscillations were measured from the central region. Multivariate regression models were used for both affected and non-affected hemispheres. Results: Motor function was negatively associated with Delta and Theta oscillations, while positively associated with Alpha oscillations (both hemispheres). Similarly, cognition levels measured were negatively associated with Delta activity. Depression levels were negatively associated with Alpha activity specifically in the affected hemisphere, while positively associated with Beta activity in both hemispheres. Regarding pain measures, no significant association was observed, while CPM measure showed a positive association with Alpha activity in the non-affected hemisphere. Finally, we found that theta/alpha ratio was negatively associated with motor function and CPM scores. Conclusion: The results lead us to propose a framework for brain oscillations in stroke, whereas Delta and Beta would represent disrupted mal-adaptive brain plasticity and Theta and Alpha would represent compensatory and functional brain oscillations for motor and sensory deficits in stroke, respectively.