Bahar Zirak, Mohsen Naghipourfar, Ali Saberi, Delaram Pouyabahar, Amirhossein Zarezadeh, Lixi Luo, Lisa Fish, Doowon Huh, Albertas Navickas, Ali Sharifi-Zarchi, Hani Goodarzi
{"title":"利用可解释的机器学习揭示小 RNA 分泌的语法。","authors":"Bahar Zirak, Mohsen Naghipourfar, Ali Saberi, Delaram Pouyabahar, Amirhossein Zarezadeh, Lixi Luo, Lisa Fish, Doowon Huh, Albertas Navickas, Ali Sharifi-Zarchi, Hani Goodarzi","doi":"10.1016/j.xgen.2024.100522","DOIUrl":null,"url":null,"abstract":"<p><p>Small non-coding RNAs can be secreted through a variety of mechanisms, including exosomal sorting, in small extracellular vesicles, and within lipoprotein complexes. However, the mechanisms that govern their sorting and secretion are not well understood. Here, we present ExoGRU, a machine learning model that predicts small RNA secretion probabilities from primary RNA sequences. We experimentally validated the performance of this model through ExoGRU-guided mutagenesis and synthetic RNA sequence analysis. Additionally, we used ExoGRU to reveal cis and trans factors that underlie small RNA secretion, including known and novel RNA-binding proteins (RBPs), e.g., YBX1, HNRNPA2B1, and RBM24. We also developed a novel technique called exoCLIP, which reveals the RNA interactome of RBPs within the cell-free space. Together, our results demonstrate the power of machine learning in revealing novel biological mechanisms. In addition to providing deeper insight into small RNA secretion, this knowledge can be leveraged in therapeutic and synthetic biology applications.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":null,"pages":null},"PeriodicalIF":11.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11019361/pdf/","citationCount":"0","resultStr":"{\"title\":\"Revealing the grammar of small RNA secretion using interpretable machine learning.\",\"authors\":\"Bahar Zirak, Mohsen Naghipourfar, Ali Saberi, Delaram Pouyabahar, Amirhossein Zarezadeh, Lixi Luo, Lisa Fish, Doowon Huh, Albertas Navickas, Ali Sharifi-Zarchi, Hani Goodarzi\",\"doi\":\"10.1016/j.xgen.2024.100522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small non-coding RNAs can be secreted through a variety of mechanisms, including exosomal sorting, in small extracellular vesicles, and within lipoprotein complexes. However, the mechanisms that govern their sorting and secretion are not well understood. Here, we present ExoGRU, a machine learning model that predicts small RNA secretion probabilities from primary RNA sequences. We experimentally validated the performance of this model through ExoGRU-guided mutagenesis and synthetic RNA sequence analysis. Additionally, we used ExoGRU to reveal cis and trans factors that underlie small RNA secretion, including known and novel RNA-binding proteins (RBPs), e.g., YBX1, HNRNPA2B1, and RBM24. We also developed a novel technique called exoCLIP, which reveals the RNA interactome of RBPs within the cell-free space. Together, our results demonstrate the power of machine learning in revealing novel biological mechanisms. In addition to providing deeper insight into small RNA secretion, this knowledge can be leveraged in therapeutic and synthetic biology applications.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11019361/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2024.100522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Revealing the grammar of small RNA secretion using interpretable machine learning.
Small non-coding RNAs can be secreted through a variety of mechanisms, including exosomal sorting, in small extracellular vesicles, and within lipoprotein complexes. However, the mechanisms that govern their sorting and secretion are not well understood. Here, we present ExoGRU, a machine learning model that predicts small RNA secretion probabilities from primary RNA sequences. We experimentally validated the performance of this model through ExoGRU-guided mutagenesis and synthetic RNA sequence analysis. Additionally, we used ExoGRU to reveal cis and trans factors that underlie small RNA secretion, including known and novel RNA-binding proteins (RBPs), e.g., YBX1, HNRNPA2B1, and RBM24. We also developed a novel technique called exoCLIP, which reveals the RNA interactome of RBPs within the cell-free space. Together, our results demonstrate the power of machine learning in revealing novel biological mechanisms. In addition to providing deeper insight into small RNA secretion, this knowledge can be leveraged in therapeutic and synthetic biology applications.