在生物地球化学反演模型中整合基于性状的化学计量揭示浮游植物生理学与全球碳输出之间的联系

IF 5.4 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Megan R. Sullivan, François W. Primeau, George I. Hagstrom, Wei-Lei Wang, Adam C. Martiny
{"title":"在生物地球化学反演模型中整合基于性状的化学计量揭示浮游植物生理学与全球碳输出之间的联系","authors":"Megan R. Sullivan,&nbsp;François W. Primeau,&nbsp;George I. Hagstrom,&nbsp;Wei-Lei Wang,&nbsp;Adam C. Martiny","doi":"10.1029/2023GB007986","DOIUrl":null,"url":null,"abstract":"<p>The elemental ratios of carbon, nitrogen, and phosphorus (C:N:P) within organic matter play a key role in coupling biogeochemical cycles in the global ocean. At the cellular level, these ratios are controlled by physiological responses to the environment. But linking these cellular-level processes to global biogeochemical cycles remains challenging. We present a novel model framework that combines knowledge of phytoplankton cellular functioning with global scale hydrographic data, to assess the role of variable carbon-to-phosphorus ratios (<i>R</i><sub><i>C</i>:<i>P</i></sub>) on the distribution of export production. We implement a trait-based mechanistic model of phytoplankton growth into a global biogeochemical inverse model to predict global patterns of phytoplankton physiology and stoichiometry that are consistent with both biological growth mechanisms and hydrographic carbon and nutrient observations. We compare this model to empirical parameterizations relating <i>R</i><sub><i>C</i>:<i>P</i></sub> to temperature or phosphate concentration. We find that the way the model represents variable stoichiometry affects the magnitude and spatial pattern of carbon export, with globally integrated fluxes varying by up to 10% (1.3 Pg C yr<sup>−1</sup>) across models. Despite these differences, all models exhibit strong consistency with observed dissolved inorganic carbon and phosphate concentrations (<i>R</i><sup>2</sup> &gt; 0.9), underscoring the challenge of selecting the most accurate model structure. We also find that the choice of parameterization impacts the capacity of changing <i>R</i><sub><i>C</i>:<i>P</i></sub> to buffer predicted export declines. Our novel framework offers a pathway by which additional biological information might be used to reduce the structural uncertainty in model representations of phytoplankton stoichiometry, potentially improving our capacity to project future changes.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 3","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007986","citationCount":"0","resultStr":"{\"title\":\"Integrating Trait-Based Stoichiometry in a Biogeochemical Inverse Model Reveals Links Between Phytoplankton Physiology and Global Carbon Export\",\"authors\":\"Megan R. Sullivan,&nbsp;François W. Primeau,&nbsp;George I. Hagstrom,&nbsp;Wei-Lei Wang,&nbsp;Adam C. Martiny\",\"doi\":\"10.1029/2023GB007986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The elemental ratios of carbon, nitrogen, and phosphorus (C:N:P) within organic matter play a key role in coupling biogeochemical cycles in the global ocean. At the cellular level, these ratios are controlled by physiological responses to the environment. But linking these cellular-level processes to global biogeochemical cycles remains challenging. We present a novel model framework that combines knowledge of phytoplankton cellular functioning with global scale hydrographic data, to assess the role of variable carbon-to-phosphorus ratios (<i>R</i><sub><i>C</i>:<i>P</i></sub>) on the distribution of export production. We implement a trait-based mechanistic model of phytoplankton growth into a global biogeochemical inverse model to predict global patterns of phytoplankton physiology and stoichiometry that are consistent with both biological growth mechanisms and hydrographic carbon and nutrient observations. We compare this model to empirical parameterizations relating <i>R</i><sub><i>C</i>:<i>P</i></sub> to temperature or phosphate concentration. We find that the way the model represents variable stoichiometry affects the magnitude and spatial pattern of carbon export, with globally integrated fluxes varying by up to 10% (1.3 Pg C yr<sup>−1</sup>) across models. Despite these differences, all models exhibit strong consistency with observed dissolved inorganic carbon and phosphate concentrations (<i>R</i><sup>2</sup> &gt; 0.9), underscoring the challenge of selecting the most accurate model structure. We also find that the choice of parameterization impacts the capacity of changing <i>R</i><sub><i>C</i>:<i>P</i></sub> to buffer predicted export declines. Our novel framework offers a pathway by which additional biological information might be used to reduce the structural uncertainty in model representations of phytoplankton stoichiometry, potentially improving our capacity to project future changes.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"38 3\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007986\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007986\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007986","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

有机物中的碳、氮、磷(C:N:P)元素比例在全球海洋生物地球化学循环中起着关键作用。在细胞层面,这些比例受环境生理反应的控制。但是,将这些细胞层面的过程与全球生物地球化学循环联系起来仍然具有挑战性。我们提出了一个新颖的模型框架,将浮游植物细胞功能知识与全球尺度的水文数据相结合,以评估可变碳磷比(RC:P)对出口生产分布的作用。我们将基于性状的浮游植物生长机理模型应用到全球生物地球化学反演模型中,以预测浮游植物生理学和化学计量学的全球模式,该模式与生物生长机理以及水文碳和营养物观测结果一致。我们将该模型与 RC:P 与温度或磷酸盐浓度相关的经验参数进行了比较。我们发现,模型表示可变化学计量的方式会影响碳输出的规模和空间模式,不同模型的全球综合通量最多相差 10%(1.3 Pg C yr-1)。尽管存在这些差异,但所有模型都与观测到的溶解无机碳和磷酸盐浓度表现出很强的一致性(R2 > 0.9),突出了选择最精确模型结构的挑战。我们还发现,参数化的选择会影响 RC:P 的变化对预测的出口下降的缓冲能力。我们的新框架提供了一种途径,可以利用更多的生物信息来减少浮游植物化学计量模型表征结构的不确定性,从而提高我们预测未来变化的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrating Trait-Based Stoichiometry in a Biogeochemical Inverse Model Reveals Links Between Phytoplankton Physiology and Global Carbon Export

Integrating Trait-Based Stoichiometry in a Biogeochemical Inverse Model Reveals Links Between Phytoplankton Physiology and Global Carbon Export

The elemental ratios of carbon, nitrogen, and phosphorus (C:N:P) within organic matter play a key role in coupling biogeochemical cycles in the global ocean. At the cellular level, these ratios are controlled by physiological responses to the environment. But linking these cellular-level processes to global biogeochemical cycles remains challenging. We present a novel model framework that combines knowledge of phytoplankton cellular functioning with global scale hydrographic data, to assess the role of variable carbon-to-phosphorus ratios (RC:P) on the distribution of export production. We implement a trait-based mechanistic model of phytoplankton growth into a global biogeochemical inverse model to predict global patterns of phytoplankton physiology and stoichiometry that are consistent with both biological growth mechanisms and hydrographic carbon and nutrient observations. We compare this model to empirical parameterizations relating RC:P to temperature or phosphate concentration. We find that the way the model represents variable stoichiometry affects the magnitude and spatial pattern of carbon export, with globally integrated fluxes varying by up to 10% (1.3 Pg C yr−1) across models. Despite these differences, all models exhibit strong consistency with observed dissolved inorganic carbon and phosphate concentrations (R2 > 0.9), underscoring the challenge of selecting the most accurate model structure. We also find that the choice of parameterization impacts the capacity of changing RC:P to buffer predicted export declines. Our novel framework offers a pathway by which additional biological information might be used to reduce the structural uncertainty in model representations of phytoplankton stoichiometry, potentially improving our capacity to project future changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信