{"title":"精原细胞干细胞移植后,恢复非瘢痕受体小鼠的生育能力。","authors":"Hiroko Morimoto, Narumi Ogonuki, Shogo Matoba, Mito Kanatsu-Shinohara, Atsuo Ogura, Takashi Shinohara","doi":"10.1016/j.stemcr.2024.02.003","DOIUrl":null,"url":null,"abstract":"<p><p>Spermatogonial stem cell (SSC) transplantation is a valuable tool for studying stem cell-niche interaction. However, the conventional approach requires the removal of endogenous SSCs, causing damage to the niche. Here we introduce WIN18,446, an ALDH1A2 inhibitor, to enhance SSC colonization in nonablated recipients. Pre-transplantation treatment with WIN18,446 induced abnormal claudin protein expression, which comprises the blood-testis barrier and impedes SSC colonization. Consequently, WIN18,446 increased colonization efficiency by 4.6-fold compared with untreated host. WIN18,446-treated testes remained small despite the cessation of WIN18,446, suggesting its irreversible effect. Offspring were born by microinsemination using donor-derived sperm. While WIN18,446 was lethal to busulfan-treated mice, cyclophosphamide- or radiation-treated animals survived after WIN18,446 treatment. Although WIN18,446 is not applicable to humans due to toxicity, similar ALDH1A2 inhibitors may be useful for SSC transplantation into nonablated testes, shedding light on the role of retinoid metabolism on SSC-niche interactions and advancing SSC research in animal models and humans.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096438/pdf/","citationCount":"0","resultStr":"{\"title\":\"Restoration of fertility in nonablated recipient mice after spermatogonial stem cell transplantation.\",\"authors\":\"Hiroko Morimoto, Narumi Ogonuki, Shogo Matoba, Mito Kanatsu-Shinohara, Atsuo Ogura, Takashi Shinohara\",\"doi\":\"10.1016/j.stemcr.2024.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spermatogonial stem cell (SSC) transplantation is a valuable tool for studying stem cell-niche interaction. However, the conventional approach requires the removal of endogenous SSCs, causing damage to the niche. Here we introduce WIN18,446, an ALDH1A2 inhibitor, to enhance SSC colonization in nonablated recipients. Pre-transplantation treatment with WIN18,446 induced abnormal claudin protein expression, which comprises the blood-testis barrier and impedes SSC colonization. Consequently, WIN18,446 increased colonization efficiency by 4.6-fold compared with untreated host. WIN18,446-treated testes remained small despite the cessation of WIN18,446, suggesting its irreversible effect. Offspring were born by microinsemination using donor-derived sperm. While WIN18,446 was lethal to busulfan-treated mice, cyclophosphamide- or radiation-treated animals survived after WIN18,446 treatment. Although WIN18,446 is not applicable to humans due to toxicity, similar ALDH1A2 inhibitors may be useful for SSC transplantation into nonablated testes, shedding light on the role of retinoid metabolism on SSC-niche interactions and advancing SSC research in animal models and humans.</p>\",\"PeriodicalId\":21885,\"journal\":{\"name\":\"Stem Cell Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096438/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stemcr.2024.02.003\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2024.02.003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Restoration of fertility in nonablated recipient mice after spermatogonial stem cell transplantation.
Spermatogonial stem cell (SSC) transplantation is a valuable tool for studying stem cell-niche interaction. However, the conventional approach requires the removal of endogenous SSCs, causing damage to the niche. Here we introduce WIN18,446, an ALDH1A2 inhibitor, to enhance SSC colonization in nonablated recipients. Pre-transplantation treatment with WIN18,446 induced abnormal claudin protein expression, which comprises the blood-testis barrier and impedes SSC colonization. Consequently, WIN18,446 increased colonization efficiency by 4.6-fold compared with untreated host. WIN18,446-treated testes remained small despite the cessation of WIN18,446, suggesting its irreversible effect. Offspring were born by microinsemination using donor-derived sperm. While WIN18,446 was lethal to busulfan-treated mice, cyclophosphamide- or radiation-treated animals survived after WIN18,446 treatment. Although WIN18,446 is not applicable to humans due to toxicity, similar ALDH1A2 inhibitors may be useful for SSC transplantation into nonablated testes, shedding light on the role of retinoid metabolism on SSC-niche interactions and advancing SSC research in animal models and humans.
期刊介绍:
Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.