S. Helena Donner, Marijn Slingerland, Mariska M. Beekman, Arthur Comte, Marcel Dicke, Bas J. Zwaan, Bart A. Pannebakker, Eveline C. Verhulst
{"title":"蚜虫种群经常感染兼性内生菌。","authors":"S. Helena Donner, Marijn Slingerland, Mariska M. Beekman, Arthur Comte, Marcel Dicke, Bas J. Zwaan, Bart A. Pannebakker, Eveline C. Verhulst","doi":"10.1111/1462-2920.16599","DOIUrl":null,"url":null,"abstract":"<p>The occurrence of facultative endosymbionts has been studied in many commercially important crop pest aphids, but their occurrence and effects in non-commercial aphid species in natural populations have received less attention. We screened 437 aphid samples belonging to 106 aphid species for the eight most common facultative aphid endosymbionts. We found one or more facultative endosymbionts in 53% (56 of 106) of the species investigated. This likely underestimates the situation in the field because facultative endosymbionts are often present in only some colonies of an aphid species. Oligophagous aphid species carried facultative endosymbionts significantly more often than monophagous species. We did not find a significant correlation between ant tending and facultative endosymbiont presence. In conclusion, we found that facultative endosymbionts are common among aphid populations. This study is, to our knowledge, the first of its kind in the Netherlands and provides a basis for future research in this field. For instance, it is still unknown in what way many of these endosymbionts affect their hosts, which is important for determining the importance of facultative endosymbionts to community dynamics.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16599","citationCount":"0","resultStr":"{\"title\":\"Aphid populations are frequently infected with facultative endosymbionts\",\"authors\":\"S. Helena Donner, Marijn Slingerland, Mariska M. Beekman, Arthur Comte, Marcel Dicke, Bas J. Zwaan, Bart A. Pannebakker, Eveline C. Verhulst\",\"doi\":\"10.1111/1462-2920.16599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The occurrence of facultative endosymbionts has been studied in many commercially important crop pest aphids, but their occurrence and effects in non-commercial aphid species in natural populations have received less attention. We screened 437 aphid samples belonging to 106 aphid species for the eight most common facultative aphid endosymbionts. We found one or more facultative endosymbionts in 53% (56 of 106) of the species investigated. This likely underestimates the situation in the field because facultative endosymbionts are often present in only some colonies of an aphid species. Oligophagous aphid species carried facultative endosymbionts significantly more often than monophagous species. We did not find a significant correlation between ant tending and facultative endosymbiont presence. In conclusion, we found that facultative endosymbionts are common among aphid populations. This study is, to our knowledge, the first of its kind in the Netherlands and provides a basis for future research in this field. For instance, it is still unknown in what way many of these endosymbionts affect their hosts, which is important for determining the importance of facultative endosymbionts to community dynamics.</p>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16599\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16599\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16599","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Aphid populations are frequently infected with facultative endosymbionts
The occurrence of facultative endosymbionts has been studied in many commercially important crop pest aphids, but their occurrence and effects in non-commercial aphid species in natural populations have received less attention. We screened 437 aphid samples belonging to 106 aphid species for the eight most common facultative aphid endosymbionts. We found one or more facultative endosymbionts in 53% (56 of 106) of the species investigated. This likely underestimates the situation in the field because facultative endosymbionts are often present in only some colonies of an aphid species. Oligophagous aphid species carried facultative endosymbionts significantly more often than monophagous species. We did not find a significant correlation between ant tending and facultative endosymbiont presence. In conclusion, we found that facultative endosymbionts are common among aphid populations. This study is, to our knowledge, the first of its kind in the Netherlands and provides a basis for future research in this field. For instance, it is still unknown in what way many of these endosymbionts affect their hosts, which is important for determining the importance of facultative endosymbionts to community dynamics.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens