{"title":"在无蛋黄扩展剂中添加曲哈洛糖对冷冻犬精子的常规参数以及与活性氧、凋亡和运动性相关的基因表达的影响","authors":"Saddah Ibrahim, Sangmin Shin, Nabeel Abdelbagi Hamad Talha, Yubyeol Jeon, Il-Jeoung Yu","doi":"10.1089/bio.2023.0082","DOIUrl":null,"url":null,"abstract":"<p><p>The present study was conducted to evaluate the effects of trehalose supplementation in egg-yolk (EY)-free tris extender on dog spermatozoa. Pooled spermatozoa were diluted with extender 1 (EY-free tris extender supplemented with 0, 10, 15, 20, or 30 mM trehalose) and cooled (2 × 10<sup>8</sup> sperm/mL) for 1 hour at 4°C. After that, extender 2 (extender 1 containing 1 M glycerol) was added (v:v) to the diluted sperm, loaded in 0.5-mL straws (1 × 10<sup>8</sup> sperm/mL), and incubated at 4°C for 30 minutes. The sperm straws were frozen over liquid nitrogen (LN<sub>2</sub>) vapor for 20 minutes and then plunged directly into LN<sub>2</sub>. After thawing at 37°C for 25 seconds, sperm progressive motility (CASA), viability (SYBR-14/PI), apoptosis (Annexin V/PI), and reactive oxygen species (ROS; H<sub>2</sub>DCFDA/PI) were evaluated. Thereafter, the optimal concentrations of trehalose were selected, and the gene expression of <i>BAX</i>, <i>BCL2</i>, <i>NOX5</i>, <i>SMOX</i>, <i>OGG1</i>, and <i>ROMO1</i> was evaluated after freeze-thawing. Supplementation with 20 and 30 mM trehalose significantly increased sperm progressive motility and viability compared to the control. However, trehalose had no significant effect on sperm ROS or phosphatidylserine translocation index. There were minor numerical increases and decreases in gene expression when the selected optimal concentrations of trehalose (20 and 30 mM) were compared to the control. However, there were no significant differences. We conclude that the addition of trehalose (20 and 30 mM) in EY-free extender could improve sperm motility and viability without significant effects on ROS, apoptosis, or gene expression.</p>","PeriodicalId":55358,"journal":{"name":"Biopreservation and Biobanking","volume":" ","pages":"395-403"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Trehalose Supplementation in Egg-Yolk-Free Extender on Conventional Parameters and Gene Expression Related to Reactive Oxygen Species, Apoptosis, and Motility of Frozen Dog Spermatozoa.\",\"authors\":\"Saddah Ibrahim, Sangmin Shin, Nabeel Abdelbagi Hamad Talha, Yubyeol Jeon, Il-Jeoung Yu\",\"doi\":\"10.1089/bio.2023.0082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study was conducted to evaluate the effects of trehalose supplementation in egg-yolk (EY)-free tris extender on dog spermatozoa. Pooled spermatozoa were diluted with extender 1 (EY-free tris extender supplemented with 0, 10, 15, 20, or 30 mM trehalose) and cooled (2 × 10<sup>8</sup> sperm/mL) for 1 hour at 4°C. After that, extender 2 (extender 1 containing 1 M glycerol) was added (v:v) to the diluted sperm, loaded in 0.5-mL straws (1 × 10<sup>8</sup> sperm/mL), and incubated at 4°C for 30 minutes. The sperm straws were frozen over liquid nitrogen (LN<sub>2</sub>) vapor for 20 minutes and then plunged directly into LN<sub>2</sub>. After thawing at 37°C for 25 seconds, sperm progressive motility (CASA), viability (SYBR-14/PI), apoptosis (Annexin V/PI), and reactive oxygen species (ROS; H<sub>2</sub>DCFDA/PI) were evaluated. Thereafter, the optimal concentrations of trehalose were selected, and the gene expression of <i>BAX</i>, <i>BCL2</i>, <i>NOX5</i>, <i>SMOX</i>, <i>OGG1</i>, and <i>ROMO1</i> was evaluated after freeze-thawing. Supplementation with 20 and 30 mM trehalose significantly increased sperm progressive motility and viability compared to the control. However, trehalose had no significant effect on sperm ROS or phosphatidylserine translocation index. There were minor numerical increases and decreases in gene expression when the selected optimal concentrations of trehalose (20 and 30 mM) were compared to the control. However, there were no significant differences. We conclude that the addition of trehalose (20 and 30 mM) in EY-free extender could improve sperm motility and viability without significant effects on ROS, apoptosis, or gene expression.</p>\",\"PeriodicalId\":55358,\"journal\":{\"name\":\"Biopreservation and Biobanking\",\"volume\":\" \",\"pages\":\"395-403\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopreservation and Biobanking\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/bio.2023.0082\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopreservation and Biobanking","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2023.0082","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Trehalose Supplementation in Egg-Yolk-Free Extender on Conventional Parameters and Gene Expression Related to Reactive Oxygen Species, Apoptosis, and Motility of Frozen Dog Spermatozoa.
The present study was conducted to evaluate the effects of trehalose supplementation in egg-yolk (EY)-free tris extender on dog spermatozoa. Pooled spermatozoa were diluted with extender 1 (EY-free tris extender supplemented with 0, 10, 15, 20, or 30 mM trehalose) and cooled (2 × 108 sperm/mL) for 1 hour at 4°C. After that, extender 2 (extender 1 containing 1 M glycerol) was added (v:v) to the diluted sperm, loaded in 0.5-mL straws (1 × 108 sperm/mL), and incubated at 4°C for 30 minutes. The sperm straws were frozen over liquid nitrogen (LN2) vapor for 20 minutes and then plunged directly into LN2. After thawing at 37°C for 25 seconds, sperm progressive motility (CASA), viability (SYBR-14/PI), apoptosis (Annexin V/PI), and reactive oxygen species (ROS; H2DCFDA/PI) were evaluated. Thereafter, the optimal concentrations of trehalose were selected, and the gene expression of BAX, BCL2, NOX5, SMOX, OGG1, and ROMO1 was evaluated after freeze-thawing. Supplementation with 20 and 30 mM trehalose significantly increased sperm progressive motility and viability compared to the control. However, trehalose had no significant effect on sperm ROS or phosphatidylserine translocation index. There were minor numerical increases and decreases in gene expression when the selected optimal concentrations of trehalose (20 and 30 mM) were compared to the control. However, there were no significant differences. We conclude that the addition of trehalose (20 and 30 mM) in EY-free extender could improve sperm motility and viability without significant effects on ROS, apoptosis, or gene expression.
Biopreservation and BiobankingBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
自引率
12.50%
发文量
114
期刊介绍:
Biopreservation and Biobanking is the first journal to provide a unifying forum for the peer-reviewed communication of recent advances in the emerging and evolving field of biospecimen procurement, processing, preservation and banking, distribution, and use. The Journal publishes a range of original articles focusing on current challenges and problems in biopreservation, and advances in methods to address these issues related to the processing of macromolecules, cells, and tissues for research.
In a new section dedicated to Emerging Markets and Technologies, the Journal highlights the emergence of new markets and technologies that are either adopting or disrupting the biobank framework as they imprint on society. The solutions presented here are anticipated to help drive innovation within the biobank community.
Biopreservation and Biobanking also explores the ethical, legal, and societal considerations surrounding biobanking and biorepository operation. Ideas and practical solutions relevant to improved quality, efficiency, and sustainability of repositories, and relating to their management, operation and oversight are discussed as well.