[CT 定量参数在预测肺磨玻璃结节病理类型中的价值]。

Q4 Medicine
Yiqiu Shi, Yuwen Shen, Jie Chen, Wanying Yan, Kefu Liu
{"title":"[CT 定量参数在预测肺磨玻璃结节病理类型中的价值]。","authors":"Yiqiu Shi, Yuwen Shen, Jie Chen, Wanying Yan, Kefu Liu","doi":"10.3779/j.issn.1009-3419.2024.102.09","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The pathological types of lung ground glass nodules (GGNs) show great significance to the clinical treatment. This study was aimed to predict pathological types of GGNs based on computed tomography (CT) quantitative parameters.</p><p><strong>Methods: </strong>389 GGNs confirmed by postoperative pathology were selected, including 138 cases of precursor glandular lesions [atypical adenomatous hyperplasia (AAH) and adenocarcinoma in situ (AIS)], 109 cases of microinvasive adenocarcinoma (MIA) and 142 cases of invasive adenocarcinoma (IAC). The morphological characteristics of nodules were evaluated subjectively by radiologist, as well as artificial intelligence (AI).</p><p><strong>Results: </strong>In the subjective CT signs, the maximum diameter of nodule and the frequency of spiculation, lobulation and pleural traction increased from AAH+AIS, MIA to IAC. In the AI quantitative parameters, parameters related to size and CT value, proportion of solid component, energy and entropy increased from AAH+AIS, MIA to IAC. There was no significant difference between AI quantitative parameters and the subjective CT signs for distinguishing the pathological types of GGNs.</p><p><strong>Conclusions: </strong>AI quantitative parameters were valuable in distinguishing the pathological types of GGNs.</p>","PeriodicalId":39317,"journal":{"name":"中国肺癌杂志","volume":"27 2","pages":"118-125"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918243/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Value of CT Quantitative Parameters in Prediction of Pathological Types\\u2029of Lung Ground Glass Nodules].\",\"authors\":\"Yiqiu Shi, Yuwen Shen, Jie Chen, Wanying Yan, Kefu Liu\",\"doi\":\"10.3779/j.issn.1009-3419.2024.102.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The pathological types of lung ground glass nodules (GGNs) show great significance to the clinical treatment. This study was aimed to predict pathological types of GGNs based on computed tomography (CT) quantitative parameters.</p><p><strong>Methods: </strong>389 GGNs confirmed by postoperative pathology were selected, including 138 cases of precursor glandular lesions [atypical adenomatous hyperplasia (AAH) and adenocarcinoma in situ (AIS)], 109 cases of microinvasive adenocarcinoma (MIA) and 142 cases of invasive adenocarcinoma (IAC). The morphological characteristics of nodules were evaluated subjectively by radiologist, as well as artificial intelligence (AI).</p><p><strong>Results: </strong>In the subjective CT signs, the maximum diameter of nodule and the frequency of spiculation, lobulation and pleural traction increased from AAH+AIS, MIA to IAC. In the AI quantitative parameters, parameters related to size and CT value, proportion of solid component, energy and entropy increased from AAH+AIS, MIA to IAC. There was no significant difference between AI quantitative parameters and the subjective CT signs for distinguishing the pathological types of GGNs.</p><p><strong>Conclusions: </strong>AI quantitative parameters were valuable in distinguishing the pathological types of GGNs.</p>\",\"PeriodicalId\":39317,\"journal\":{\"name\":\"中国肺癌杂志\",\"volume\":\"27 2\",\"pages\":\"118-125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918243/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国肺癌杂志\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3779/j.issn.1009-3419.2024.102.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国肺癌杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3779/j.issn.1009-3419.2024.102.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

背景:肺磨玻璃结节(GGNs)的病理类型对临床治疗具有重要意义。方法:选取经术后病理证实的 389 例 GGN,包括 138 例腺体前病变[非典型腺瘤性增生(AAH)和原位腺癌(AIS)]、109 例微浸润性腺癌(MIA)和 142 例浸润性腺癌(IAC)。结节的形态特征由放射科医生以及人工智能(AI)进行主观评价:在主观 CT 征象中,从 AAH+AIS、MIA 到 IAC,结节的最大直径以及棘状、分叶状和胸膜牵引的频率均有所增加。在 AI 定量参数中,与大小和 CT 值、固体成分比例、能量和熵相关的参数从 AAH+AIS、MIA 到 IAC 均有所增加。在区分 GGN 病理类型方面,AI 定量参数与主观 CT 征象无明显差异:AI定量参数对鉴别GGN的病理类型很有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Value of CT Quantitative Parameters in Prediction of Pathological Types
of Lung Ground Glass Nodules].

Background: The pathological types of lung ground glass nodules (GGNs) show great significance to the clinical treatment. This study was aimed to predict pathological types of GGNs based on computed tomography (CT) quantitative parameters.

Methods: 389 GGNs confirmed by postoperative pathology were selected, including 138 cases of precursor glandular lesions [atypical adenomatous hyperplasia (AAH) and adenocarcinoma in situ (AIS)], 109 cases of microinvasive adenocarcinoma (MIA) and 142 cases of invasive adenocarcinoma (IAC). The morphological characteristics of nodules were evaluated subjectively by radiologist, as well as artificial intelligence (AI).

Results: In the subjective CT signs, the maximum diameter of nodule and the frequency of spiculation, lobulation and pleural traction increased from AAH+AIS, MIA to IAC. In the AI quantitative parameters, parameters related to size and CT value, proportion of solid component, energy and entropy increased from AAH+AIS, MIA to IAC. There was no significant difference between AI quantitative parameters and the subjective CT signs for distinguishing the pathological types of GGNs.

Conclusions: AI quantitative parameters were valuable in distinguishing the pathological types of GGNs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国肺癌杂志
中国肺癌杂志 Medicine-Pulmonary and Respiratory Medicine
CiteScore
1.40
自引率
0.00%
发文量
5131
审稿时长
14 weeks
期刊介绍: Chinese Journal of Lung Cancer(CJLC, pISSN 1009-3419, eISSN 1999-6187), a monthly Open Access journal, is hosted by Chinese Anti-Cancer Association, Chinese Antituberculosis Association, Tianjin Medical University General Hospital. CJLC was indexed in DOAJ, EMBASE/SCOPUS, Chemical Abstract(CA), CSA-Biological Science, HINARI, EBSCO-CINAHL,CABI Abstract, Global Health, CNKI, etc. Editor-in-Chief: Professor Qinghua ZHOU.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信