{"title":"从革兰氏阴性细菌中高效分离基因组 DNA 的快速、廉价而有效的方法。","authors":"Lihini Ranesha Weerakkody, Chamindri Witharana","doi":"10.1007/s00438-024-02120-x","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, there are several protocols to extract bacterial DNA based on different principles. However, the quantity and the quality of the DNA obtained by each method are highly variable and microorganism dependent. In most of these classical crude methods, highly toxic and hazardous organic solvents such as phenol and chloroform are used for deproteinization, whereas in certain protocols, expensive enzymes including RNases and Proteinases are used. This study was designed to introduce a simple, rapid, inexpensive and effective genomic DNA isolation procedure for Gram-negative bacteria, without the usage of toxic chemicals and costly enzymes. This novel method was compared with another classical method known as the salting-out method, which uses proteinase-K. Concentration and yield of the extracted DNA were determined by gel electrophoresis by comparing the gel band intensity of the sample DNA to that of a DNA quantitation standard and by the Quantus™ fluorometer. According to the results, the yield of extracted DNA was higher in the novel method compared to the salting-out method. Moreover, the entire process was accomplished in less than 2 h with the novel method. Purity and integrity of extracted genomic DNA by both methods were similar. In addition, the quality of DNA was determined using Multicopy Associated Filamentation (MAF) gene amplification by polymerase chain reaction (PCR). Thus, the described technique is non-toxic, less time and fund consuming, efficient and a well-suited method for routine DNA isolation from Gram negative bacteria.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rapid, inexpensive and effective method for the efficient isolation of genomic DNA from Gram-negative bacteria.\",\"authors\":\"Lihini Ranesha Weerakkody, Chamindri Witharana\",\"doi\":\"10.1007/s00438-024-02120-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, there are several protocols to extract bacterial DNA based on different principles. However, the quantity and the quality of the DNA obtained by each method are highly variable and microorganism dependent. In most of these classical crude methods, highly toxic and hazardous organic solvents such as phenol and chloroform are used for deproteinization, whereas in certain protocols, expensive enzymes including RNases and Proteinases are used. This study was designed to introduce a simple, rapid, inexpensive and effective genomic DNA isolation procedure for Gram-negative bacteria, without the usage of toxic chemicals and costly enzymes. This novel method was compared with another classical method known as the salting-out method, which uses proteinase-K. Concentration and yield of the extracted DNA were determined by gel electrophoresis by comparing the gel band intensity of the sample DNA to that of a DNA quantitation standard and by the Quantus™ fluorometer. According to the results, the yield of extracted DNA was higher in the novel method compared to the salting-out method. Moreover, the entire process was accomplished in less than 2 h with the novel method. Purity and integrity of extracted genomic DNA by both methods were similar. In addition, the quality of DNA was determined using Multicopy Associated Filamentation (MAF) gene amplification by polymerase chain reaction (PCR). Thus, the described technique is non-toxic, less time and fund consuming, efficient and a well-suited method for routine DNA isolation from Gram negative bacteria.</p>\",\"PeriodicalId\":18816,\"journal\":{\"name\":\"Molecular Genetics and Genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00438-024-02120-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-024-02120-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
目前,有几种基于不同原理提取细菌 DNA 的方案。然而,每种方法获得的 DNA 数量和质量都有很大差异,而且取决于微生物。在这些经典的粗略方法中,大多数都使用苯酚和氯仿等剧毒和有害的有机溶剂进行脱蛋白,而在某些方案中,则使用昂贵的酶,包括 RN 酶和蛋白酶。本研究旨在介绍一种简单、快速、廉价且有效的革兰氏阴性细菌基因组 DNA 分离程序,无需使用有毒化学物质和昂贵的酶。这项新方法与另一种使用蛋白酶 K 的经典方法(盐析法)进行了比较。通过比较样本 DNA 与 DNA 定量标准的凝胶条带强度和 Quantus™ 荧光仪,用凝胶电泳法测定提取 DNA 的浓度和产量。结果表明,与盐析法相比,新方法的 DNA 提取率更高。此外,新方法的整个过程不到 2 小时。两种方法提取的基因组 DNA 的纯度和完整性相似。此外,DNA 的质量是通过聚合酶链反应(PCR)的多拷贝相关丝状化(MAF)基因扩增来确定的。因此,所述技术无毒、耗时少、耗资少、效率高,是一种非常适合从革兰氏阴性细菌中进行常规 DNA 分离的方法。
A rapid, inexpensive and effective method for the efficient isolation of genomic DNA from Gram-negative bacteria.
Currently, there are several protocols to extract bacterial DNA based on different principles. However, the quantity and the quality of the DNA obtained by each method are highly variable and microorganism dependent. In most of these classical crude methods, highly toxic and hazardous organic solvents such as phenol and chloroform are used for deproteinization, whereas in certain protocols, expensive enzymes including RNases and Proteinases are used. This study was designed to introduce a simple, rapid, inexpensive and effective genomic DNA isolation procedure for Gram-negative bacteria, without the usage of toxic chemicals and costly enzymes. This novel method was compared with another classical method known as the salting-out method, which uses proteinase-K. Concentration and yield of the extracted DNA were determined by gel electrophoresis by comparing the gel band intensity of the sample DNA to that of a DNA quantitation standard and by the Quantus™ fluorometer. According to the results, the yield of extracted DNA was higher in the novel method compared to the salting-out method. Moreover, the entire process was accomplished in less than 2 h with the novel method. Purity and integrity of extracted genomic DNA by both methods were similar. In addition, the quality of DNA was determined using Multicopy Associated Filamentation (MAF) gene amplification by polymerase chain reaction (PCR). Thus, the described technique is non-toxic, less time and fund consuming, efficient and a well-suited method for routine DNA isolation from Gram negative bacteria.
期刊介绍:
Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology.
The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.