{"title":"沿环面上的柯尔莫哥洛夫流的共轭点","authors":"Alice Le Brigant, Stephen C. Preston","doi":"10.1007/s00021-024-00853-8","DOIUrl":null,"url":null,"abstract":"<div><p>The geodesics in the group of volume-preserving diffeomorphisms (volumorphisms) of a manifold <i>M</i>, for a Riemannian metric defined by the kinetic energy, can be used to model the movement of ideal fluids in that manifold. The existence of conjugate points along such geodesics reveal that these cease to be infinitesimally length-minimizing between their endpoints. In this work, we focus on the case of the torus <span>\\(M={\\mathbb {T}}^2\\)</span> and on geodesics corresponding to steady solutions of the Euler equation generated by stream functions <span>\\(\\psi =-\\cos (mx)\\cos (ny)\\)</span> for integers <i>m</i> and <i>n</i>, called Kolmogorov flows. We show the existence of conjugate points along these geodesics for all pairs of strictly positive integers (<i>m</i>, <i>n</i>), thereby completing the characterization of all pairs (<i>m</i>, <i>n</i>) such that the associated Kolmogorov flow generates a geodesic with conjugate points.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conjugate Points Along Kolmogorov Flows on the Torus\",\"authors\":\"Alice Le Brigant, Stephen C. Preston\",\"doi\":\"10.1007/s00021-024-00853-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The geodesics in the group of volume-preserving diffeomorphisms (volumorphisms) of a manifold <i>M</i>, for a Riemannian metric defined by the kinetic energy, can be used to model the movement of ideal fluids in that manifold. The existence of conjugate points along such geodesics reveal that these cease to be infinitesimally length-minimizing between their endpoints. In this work, we focus on the case of the torus <span>\\\\(M={\\\\mathbb {T}}^2\\\\)</span> and on geodesics corresponding to steady solutions of the Euler equation generated by stream functions <span>\\\\(\\\\psi =-\\\\cos (mx)\\\\cos (ny)\\\\)</span> for integers <i>m</i> and <i>n</i>, called Kolmogorov flows. We show the existence of conjugate points along these geodesics for all pairs of strictly positive integers (<i>m</i>, <i>n</i>), thereby completing the characterization of all pairs (<i>m</i>, <i>n</i>) such that the associated Kolmogorov flow generates a geodesic with conjugate points.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00853-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00853-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
摘要 对于由动能定义的黎曼度量,流形 M 的保体积差分变形(体积变形)群中的测地线可用来模拟理想流体在该流形中的运动。沿着这种测地线存在共轭点,表明这些测地线在其端点之间不再是无限长度最小的。在这项研究中,我们将重点放在环面 \(M={\mathbb {T}}^2\) 的情况上,以及对应于流函数 \(\psi =-\cos (mx)\cos (ny)\) 对于整数 m 和 n 所产生的欧拉方程稳定解的测地线上,这些测地线被称为科尔莫哥洛夫流。我们证明了所有严格正整数对(m, n)沿这些大地线存在共轭点,从而完成了所有对(m, n)的特征描述,即相关的科尔莫哥洛夫流产生了具有共轭点的大地线。
Conjugate Points Along Kolmogorov Flows on the Torus
The geodesics in the group of volume-preserving diffeomorphisms (volumorphisms) of a manifold M, for a Riemannian metric defined by the kinetic energy, can be used to model the movement of ideal fluids in that manifold. The existence of conjugate points along such geodesics reveal that these cease to be infinitesimally length-minimizing between their endpoints. In this work, we focus on the case of the torus \(M={\mathbb {T}}^2\) and on geodesics corresponding to steady solutions of the Euler equation generated by stream functions \(\psi =-\cos (mx)\cos (ny)\) for integers m and n, called Kolmogorov flows. We show the existence of conjugate points along these geodesics for all pairs of strictly positive integers (m, n), thereby completing the characterization of all pairs (m, n) such that the associated Kolmogorov flow generates a geodesic with conjugate points.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.