具有阿伦尼乌斯热粘性的流体中的球形几何对流:核心尺寸和表面温度对停滞盖厚度和内部温度缩放的影响

IF 2.4 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Pejvak Javaheri , Julian P. Lowman , Paul J. Tackley
{"title":"具有阿伦尼乌斯热粘性的流体中的球形几何对流:核心尺寸和表面温度对停滞盖厚度和内部温度缩放的影响","authors":"Pejvak Javaheri ,&nbsp;Julian P. Lowman ,&nbsp;Paul J. Tackley","doi":"10.1016/j.pepi.2024.107157","DOIUrl":null,"url":null,"abstract":"<div><p>The rock and rock-ice mixtures of the core-enveloping spherical shells comprising terrestrial body interiors have thermally determined viscosities well described by an Arrhenius dependence. Accordingly, the implied viscosity contrasts determined from the activation energies (E) characterizing such bodies can reach values exceeding <span><math><msup><mn>10</mn><mn>40</mn></msup></math></span>, for a temperature range that spans the conditions found from the lower mantle to the surface. In this study, we first explore the impact of implementing a cut-off to limit viscosity magnitude in cold regions. Using a spherical annulus geometry, we investigate the influence of core radius, surface temperature, and convective vigour on stagnant lid formation resulting from the extreme thermally induced viscosity contrasts. We demonstrate that the cut-off viscosity must be increased with decreasing curvature factor, <span><math><mi>f</mi></math></span> (<span><math><mo>=</mo><msub><mi>r</mi><mtext>in</mtext></msub><mo>/</mo><msub><mi>r</mi><mtext>out</mtext></msub></math></span>, where <span><math><msub><mi>r</mi><mtext>in</mtext></msub></math></span> and <span><math><msub><mi>r</mi><mtext>out</mtext></msub></math></span> are the inner and outer radii of the annulus, respectively), if the solutions are to be not only computationally manageable but physically valid. We find that for statistically-steady systems, the mean temperature decreases with core size, and that a viscosity contrast of at least <span><math><msup><mn>10</mn><mn>7</mn></msup></math></span> is required for stagnant lid formation as <span><math><mi>f</mi></math></span> decreases below 0.5. Inverting the results from over 80 calculations featuring stagnant lids (from a total of approximately 180 calculations), we apply an energy balance model for heat flow across the thermal boundary layers and find that the non-dimensionalized temperature in the Approximately Isothermal Layer (AIL) in the convecting region under a stagnant lid is well predicted by <span><math><msubsup><mi>T</mi><mi>AIL</mi><mo>′</mo></msubsup><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mo>−</mo><mfenced><mrow><mn>2</mn><msubsup><mi>T</mi><mtext>out</mtext><mo>′</mo></msubsup><mo>+</mo><mi>γ</mi></mrow></mfenced><mo>+</mo><msqrt><mrow><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>γ</mi><mfenced><mrow><mn>1</mn><mo>+</mo><msubsup><mi>T</mi><mtext>out</mtext><mo>′</mo></msubsup></mrow></mfenced></mrow></msqrt></mrow></mfenced></math></span> where <span><math><mi>γ</mi></math></span> is a function of E and <span><math><mi>f</mi></math></span>, and <span><math><msubsup><mi>T</mi><mtext>out</mtext><mo>′</mo></msubsup></math></span> is the non-dimensionalized surface temperature. Moreover, the normalized (i.e., non-dimensional) thickness of the stagnant lid, <span><math><msup><mi>L</mi><mo>′</mo></msup></math></span>, can be obtained from a measurement of the non-dimensional surface heat flux once <span><math><msubsup><mi>T</mi><mi>AIL</mi><mo>′</mo></msubsup></math></span> is determined. Stagnant-lid thicknesses increase from 10 to 30% of the shell thickness as <span><math><mi>f</mi></math></span> is decreased, and thick lids can overlie vigorously convecting underlying layers in small core bodies, potentially delaying secular cooling and suggesting that small objects with small cores may have developed thick elastic outer shells early in the solar system's history while maintaining vigorously convecting interiors. However, we also find that for the small number of 3-D calculations that we examined, parametrizations based on 2-D calculations overestimate the temperature of the convecting layer and the thickness of the conductive lid when <span><math><mi>f</mi></math></span> is small (less than 0.4).</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"349 ","pages":"Article 107157"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0031920124000153/pdfft?md5=12d6c0f103726e2f43e8d3d47da8ce61&pid=1-s2.0-S0031920124000153-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Spherical geometry convection in a fluid with an Arrhenius thermal viscosity dependence: The impact of core size and surface temperature on the scaling of stagnant-lid thickness and internal temperature\",\"authors\":\"Pejvak Javaheri ,&nbsp;Julian P. Lowman ,&nbsp;Paul J. Tackley\",\"doi\":\"10.1016/j.pepi.2024.107157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rock and rock-ice mixtures of the core-enveloping spherical shells comprising terrestrial body interiors have thermally determined viscosities well described by an Arrhenius dependence. Accordingly, the implied viscosity contrasts determined from the activation energies (E) characterizing such bodies can reach values exceeding <span><math><msup><mn>10</mn><mn>40</mn></msup></math></span>, for a temperature range that spans the conditions found from the lower mantle to the surface. In this study, we first explore the impact of implementing a cut-off to limit viscosity magnitude in cold regions. Using a spherical annulus geometry, we investigate the influence of core radius, surface temperature, and convective vigour on stagnant lid formation resulting from the extreme thermally induced viscosity contrasts. We demonstrate that the cut-off viscosity must be increased with decreasing curvature factor, <span><math><mi>f</mi></math></span> (<span><math><mo>=</mo><msub><mi>r</mi><mtext>in</mtext></msub><mo>/</mo><msub><mi>r</mi><mtext>out</mtext></msub></math></span>, where <span><math><msub><mi>r</mi><mtext>in</mtext></msub></math></span> and <span><math><msub><mi>r</mi><mtext>out</mtext></msub></math></span> are the inner and outer radii of the annulus, respectively), if the solutions are to be not only computationally manageable but physically valid. We find that for statistically-steady systems, the mean temperature decreases with core size, and that a viscosity contrast of at least <span><math><msup><mn>10</mn><mn>7</mn></msup></math></span> is required for stagnant lid formation as <span><math><mi>f</mi></math></span> decreases below 0.5. Inverting the results from over 80 calculations featuring stagnant lids (from a total of approximately 180 calculations), we apply an energy balance model for heat flow across the thermal boundary layers and find that the non-dimensionalized temperature in the Approximately Isothermal Layer (AIL) in the convecting region under a stagnant lid is well predicted by <span><math><msubsup><mi>T</mi><mi>AIL</mi><mo>′</mo></msubsup><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mo>−</mo><mfenced><mrow><mn>2</mn><msubsup><mi>T</mi><mtext>out</mtext><mo>′</mo></msubsup><mo>+</mo><mi>γ</mi></mrow></mfenced><mo>+</mo><msqrt><mrow><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>γ</mi><mfenced><mrow><mn>1</mn><mo>+</mo><msubsup><mi>T</mi><mtext>out</mtext><mo>′</mo></msubsup></mrow></mfenced></mrow></msqrt></mrow></mfenced></math></span> where <span><math><mi>γ</mi></math></span> is a function of E and <span><math><mi>f</mi></math></span>, and <span><math><msubsup><mi>T</mi><mtext>out</mtext><mo>′</mo></msubsup></math></span> is the non-dimensionalized surface temperature. Moreover, the normalized (i.e., non-dimensional) thickness of the stagnant lid, <span><math><msup><mi>L</mi><mo>′</mo></msup></math></span>, can be obtained from a measurement of the non-dimensional surface heat flux once <span><math><msubsup><mi>T</mi><mi>AIL</mi><mo>′</mo></msubsup></math></span> is determined. Stagnant-lid thicknesses increase from 10 to 30% of the shell thickness as <span><math><mi>f</mi></math></span> is decreased, and thick lids can overlie vigorously convecting underlying layers in small core bodies, potentially delaying secular cooling and suggesting that small objects with small cores may have developed thick elastic outer shells early in the solar system's history while maintaining vigorously convecting interiors. However, we also find that for the small number of 3-D calculations that we examined, parametrizations based on 2-D calculations overestimate the temperature of the convecting layer and the thickness of the conductive lid when <span><math><mi>f</mi></math></span> is small (less than 0.4).</p></div>\",\"PeriodicalId\":54614,\"journal\":{\"name\":\"Physics of the Earth and Planetary Interiors\",\"volume\":\"349 \",\"pages\":\"Article 107157\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0031920124000153/pdfft?md5=12d6c0f103726e2f43e8d3d47da8ce61&pid=1-s2.0-S0031920124000153-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Earth and Planetary Interiors\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031920124000153\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920124000153","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

岩石和岩冰混合物的内核包裹球壳构成了陆地天体的内部,其热力确定的粘度很好地用阿伦尼乌斯依赖关系来描述。因此,根据活化能(E)确定的此类天体的隐含粘度对比,在从下地幔到地表的温度范围内,其值可超过 、 、 。在这项研究中,我们首先探讨了在寒冷地区实施截止来限制粘度大小的影响。我们使用球形环状几何结构,研究了核心半径、表面温度和对流活力对热引起的极端粘度对比所导致的停滞盖形成的影响。我们证明,如果解决方案不仅在计算上可控,而且在物理上有效,则截止粘度必须随曲率因子(,和分别为环形的内半径和外半径)的减小而增加。我们发现,对于统计上稳定的系统,平均温度会随核尺寸的增大而降低,当温度降低到 0.5 以下时,停滞盖的形成至少需要 0.5 的粘度对比。通过反演 80 多次以停滞盖为特征的计算结果(总共约 180 次计算),我们应用热边界层热流的能量平衡模型,发现停滞盖下对流区域近似等温层(AIL)的非尺寸化温度可以很好地预测,其中是 E 和 , 的函数,是非尺寸化表面温度。此外,停滞层的归一化(即非维度)厚度 , 可以通过测量非维度表面热通量得到。停滞盖的厚度随外壳厚度的减小而增加,从10%到30%不等,在小核心天体中,厚的外壳可以覆盖在对流剧烈的底层之上,从而有可能延迟世俗冷却,这表明具有小核心的小天体可能在太阳系历史的早期就形成了厚的弹性外壳,同时保持了剧烈的内部对流。然而,我们也发现,在我们所研究的少量三维计算中,基于二维计算的参数高估了对流层的温度,以及当对流层较小时(小于0.4)导电盖的厚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spherical geometry convection in a fluid with an Arrhenius thermal viscosity dependence: The impact of core size and surface temperature on the scaling of stagnant-lid thickness and internal temperature

Spherical geometry convection in a fluid with an Arrhenius thermal viscosity dependence: The impact of core size and surface temperature on the scaling of stagnant-lid thickness and internal temperature

The rock and rock-ice mixtures of the core-enveloping spherical shells comprising terrestrial body interiors have thermally determined viscosities well described by an Arrhenius dependence. Accordingly, the implied viscosity contrasts determined from the activation energies (E) characterizing such bodies can reach values exceeding 1040, for a temperature range that spans the conditions found from the lower mantle to the surface. In this study, we first explore the impact of implementing a cut-off to limit viscosity magnitude in cold regions. Using a spherical annulus geometry, we investigate the influence of core radius, surface temperature, and convective vigour on stagnant lid formation resulting from the extreme thermally induced viscosity contrasts. We demonstrate that the cut-off viscosity must be increased with decreasing curvature factor, f (=rin/rout, where rin and rout are the inner and outer radii of the annulus, respectively), if the solutions are to be not only computationally manageable but physically valid. We find that for statistically-steady systems, the mean temperature decreases with core size, and that a viscosity contrast of at least 107 is required for stagnant lid formation as f decreases below 0.5. Inverting the results from over 80 calculations featuring stagnant lids (from a total of approximately 180 calculations), we apply an energy balance model for heat flow across the thermal boundary layers and find that the non-dimensionalized temperature in the Approximately Isothermal Layer (AIL) in the convecting region under a stagnant lid is well predicted by TAIL=122Tout+γ+γ2+4γ1+Tout where γ is a function of E and f, and Tout is the non-dimensionalized surface temperature. Moreover, the normalized (i.e., non-dimensional) thickness of the stagnant lid, L, can be obtained from a measurement of the non-dimensional surface heat flux once TAIL is determined. Stagnant-lid thicknesses increase from 10 to 30% of the shell thickness as f is decreased, and thick lids can overlie vigorously convecting underlying layers in small core bodies, potentially delaying secular cooling and suggesting that small objects with small cores may have developed thick elastic outer shells early in the solar system's history while maintaining vigorously convecting interiors. However, we also find that for the small number of 3-D calculations that we examined, parametrizations based on 2-D calculations overestimate the temperature of the convecting layer and the thickness of the conductive lid when f is small (less than 0.4).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of the Earth and Planetary Interiors
Physics of the Earth and Planetary Interiors 地学天文-地球化学与地球物理
CiteScore
5.00
自引率
4.30%
发文量
78
审稿时长
18.5 weeks
期刊介绍: Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors. Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信