软硬混合气动致动器的受力分析及其在双足尺蠖机器人中的应用

IF 1.9 4区 计算机科学 Q3 ROBOTICS
Robotica Pub Date : 2024-03-07 DOI:10.1017/s0263574724000298
Zhujin Jiang, Ketao Zhang
{"title":"软硬混合气动致动器的受力分析及其在双足尺蠖机器人中的应用","authors":"Zhujin Jiang, Ketao Zhang","doi":"10.1017/s0263574724000298","DOIUrl":null,"url":null,"abstract":"<p>This paper systematically investigates a soft-rigid hybrid pneumatic actuator (SRHPA), which consists of a rigid-foldable twisting skeleton capable of a large range of helical motion and a soft bellows muscle with high linear driving force. Considering the unique varying-pitch helical motion of the foldable skeleton, the analytical model mapping the input force generated by the bellows muscle and output forces of the actuator is revealed and verified with a simulation of the force analysis. Prototypes of the actuator are developed by fabricating the twisting skeleton with multilayered aluminum composite panels and 3D-printing the bellows muscle with thermoplastic polyurethane (TPU) 95A filament. The static and dynamic performances of the prototypes are tested to validate the analytical modeling of output forces. Using the actuator as a module, a novel bipedal inchworm robot with four modules is developed and tested to demonstrate its adaptability in confined space by switching between the going-straight, the turning-around, and the rotating gaits. The hybrid actuator and the inchworm robot with zero onboard electronics have the potential to be deployed in extreme environments where pneumatically actuated systems are preferred over electrical machines and drives, such as in nuclear and explosive environments.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"64 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Force analysis of a soft-rigid hybrid pneumatic actuator and its application in a bipedal inchworm robot\",\"authors\":\"Zhujin Jiang, Ketao Zhang\",\"doi\":\"10.1017/s0263574724000298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper systematically investigates a soft-rigid hybrid pneumatic actuator (SRHPA), which consists of a rigid-foldable twisting skeleton capable of a large range of helical motion and a soft bellows muscle with high linear driving force. Considering the unique varying-pitch helical motion of the foldable skeleton, the analytical model mapping the input force generated by the bellows muscle and output forces of the actuator is revealed and verified with a simulation of the force analysis. Prototypes of the actuator are developed by fabricating the twisting skeleton with multilayered aluminum composite panels and 3D-printing the bellows muscle with thermoplastic polyurethane (TPU) 95A filament. The static and dynamic performances of the prototypes are tested to validate the analytical modeling of output forces. Using the actuator as a module, a novel bipedal inchworm robot with four modules is developed and tested to demonstrate its adaptability in confined space by switching between the going-straight, the turning-around, and the rotating gaits. The hybrid actuator and the inchworm robot with zero onboard electronics have the potential to be deployed in extreme environments where pneumatically actuated systems are preferred over electrical machines and drives, such as in nuclear and explosive environments.</p>\",\"PeriodicalId\":49593,\"journal\":{\"name\":\"Robotica\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0263574724000298\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000298","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文系统地研究了一种软硬混合气动致动器(SRHPA),它由能够进行大范围螺旋运动的刚性可折叠扭转骨架和具有高线性驱动力的软质波纹管肌肉组成。考虑到可折叠骨架独特的变距螺旋运动,揭示了波纹管肌肉产生的输入力和致动器输出力的分析模型,并通过力分析仿真进行了验证。通过用多层铝复合板制造扭转骨架和用热塑性聚氨酯(TPU)95A 长丝三维打印波纹管肌肉,开发了致动器原型。对原型的静态和动态性能进行了测试,以验证输出力的分析模型。将致动器作为一个模块,开发并测试了具有四个模块的新型双足尺蠖机器人,通过在直走、转身和旋转步态之间的切换,展示了其在狭窄空间中的适应性。混合致动器和零机载电子设备的尺蠖机器人有可能被部署在极端环境中,在这些环境中,气动致动系统比电机和驱动器更受欢迎,例如核环境和爆炸环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Force analysis of a soft-rigid hybrid pneumatic actuator and its application in a bipedal inchworm robot

This paper systematically investigates a soft-rigid hybrid pneumatic actuator (SRHPA), which consists of a rigid-foldable twisting skeleton capable of a large range of helical motion and a soft bellows muscle with high linear driving force. Considering the unique varying-pitch helical motion of the foldable skeleton, the analytical model mapping the input force generated by the bellows muscle and output forces of the actuator is revealed and verified with a simulation of the force analysis. Prototypes of the actuator are developed by fabricating the twisting skeleton with multilayered aluminum composite panels and 3D-printing the bellows muscle with thermoplastic polyurethane (TPU) 95A filament. The static and dynamic performances of the prototypes are tested to validate the analytical modeling of output forces. Using the actuator as a module, a novel bipedal inchworm robot with four modules is developed and tested to demonstrate its adaptability in confined space by switching between the going-straight, the turning-around, and the rotating gaits. The hybrid actuator and the inchworm robot with zero onboard electronics have the potential to be deployed in extreme environments where pneumatically actuated systems are preferred over electrical machines and drives, such as in nuclear and explosive environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotica
Robotica 工程技术-机器人学
CiteScore
4.50
自引率
22.20%
发文量
181
审稿时长
9.9 months
期刊介绍: Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信