用于桌面场景探索的对象感知交互式感知技术

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Cagatay Koc, Sanem Sariel
{"title":"用于桌面场景探索的对象感知交互式感知技术","authors":"Cagatay Koc,&nbsp;Sanem Sariel","doi":"10.1016/j.robot.2024.104674","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advancements in sensors and deep learning techniques have improved reliability of robotic perceptual systems, but current systems are not robust enough for real-world challenges such as occlusions and sensing uncertainties in cluttered scenes. To overcome these issues, active or interactive perception actions are often necessary, such as sensor repositioning or object manipulation to reveal more information about the scene. Existing perception systems lack a comprehensive approach that incorporates both active and interactive action spaces, thereby limiting the robot’s perception capabilities. Moreover, these systems focus on exploring a single object or scene, without utilizing object information to guide the exploration of multiple objects. In this work, we propose an object-aware hybrid perception system that selects the next best action by considering both active and interactive action spaces and enhances the selection process with an object-aware approach to guide the cognitive robot operating in tabletop scenarios. Novel volumetric utility metrics are used to evaluate actions that include positioning sensors from a heterogeneous set or manipulating objects to gain a better perspective of the scene. The proposed system maintains the volumetric information of the scene that includes semantic information about objects, enabling it to exploit object information, associate occlusion with corresponding objects, and make informed decisions about object manipulation. We evaluate the performance of our system both in simulated and real-world experiments using a Baxter robotic platform equipped with two arms, RGB and depth cameras. Our experimental results show that the proposed system outperforms the compared state-of-the-art methods in the given scenarios, achieving an 11.2% performance increase.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Object-aware interactive perception for tabletop scene exploration\",\"authors\":\"Cagatay Koc,&nbsp;Sanem Sariel\",\"doi\":\"10.1016/j.robot.2024.104674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent advancements in sensors and deep learning techniques have improved reliability of robotic perceptual systems, but current systems are not robust enough for real-world challenges such as occlusions and sensing uncertainties in cluttered scenes. To overcome these issues, active or interactive perception actions are often necessary, such as sensor repositioning or object manipulation to reveal more information about the scene. Existing perception systems lack a comprehensive approach that incorporates both active and interactive action spaces, thereby limiting the robot’s perception capabilities. Moreover, these systems focus on exploring a single object or scene, without utilizing object information to guide the exploration of multiple objects. In this work, we propose an object-aware hybrid perception system that selects the next best action by considering both active and interactive action spaces and enhances the selection process with an object-aware approach to guide the cognitive robot operating in tabletop scenarios. Novel volumetric utility metrics are used to evaluate actions that include positioning sensors from a heterogeneous set or manipulating objects to gain a better perspective of the scene. The proposed system maintains the volumetric information of the scene that includes semantic information about objects, enabling it to exploit object information, associate occlusion with corresponding objects, and make informed decisions about object manipulation. We evaluate the performance of our system both in simulated and real-world experiments using a Baxter robotic platform equipped with two arms, RGB and depth cameras. Our experimental results show that the proposed system outperforms the compared state-of-the-art methods in the given scenarios, achieving an 11.2% performance increase.</p></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889024000575\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024000575","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

传感器和深度学习技术的最新进展提高了机器人感知系统的可靠性,但目前的系统还不足以应对现实世界中的挑战,例如遮挡和杂乱场景中的感知不确定性。为了克服这些问题,通常需要采取主动或交互式感知行动,例如重新定位传感器或操纵物体,以揭示更多场景信息。现有的感知系统缺乏一种将主动和交互式行动空间结合起来的综合方法,从而限制了机器人的感知能力。此外,这些系统侧重于探索单个物体或场景,而没有利用物体信息来指导对多个物体的探索。在这项工作中,我们提出了一种对象感知混合感知系统,该系统通过考虑主动和交互式行动空间来选择下一个最佳行动,并通过对象感知方法来增强选择过程,从而引导认知机器人在桌面场景中进行操作。新颖的体积效用指标用于评估各种行动,包括从异构集合中定位传感器或操纵物体以获得更好的场景视角。所提议的系统可维护场景的体积信息,其中包括物体的语义信息,使其能够利用物体信息,将遮挡与相应的物体联系起来,并就物体操作做出明智的决策。我们使用配备了双臂、RGB 和深度摄像头的 Baxter 机器人平台,在模拟和实际实验中对系统性能进行了评估。我们的实验结果表明,在给定的场景中,所提出的系统优于同类最先进的方法,性能提高了 11.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object-aware interactive perception for tabletop scene exploration

Recent advancements in sensors and deep learning techniques have improved reliability of robotic perceptual systems, but current systems are not robust enough for real-world challenges such as occlusions and sensing uncertainties in cluttered scenes. To overcome these issues, active or interactive perception actions are often necessary, such as sensor repositioning or object manipulation to reveal more information about the scene. Existing perception systems lack a comprehensive approach that incorporates both active and interactive action spaces, thereby limiting the robot’s perception capabilities. Moreover, these systems focus on exploring a single object or scene, without utilizing object information to guide the exploration of multiple objects. In this work, we propose an object-aware hybrid perception system that selects the next best action by considering both active and interactive action spaces and enhances the selection process with an object-aware approach to guide the cognitive robot operating in tabletop scenarios. Novel volumetric utility metrics are used to evaluate actions that include positioning sensors from a heterogeneous set or manipulating objects to gain a better perspective of the scene. The proposed system maintains the volumetric information of the scene that includes semantic information about objects, enabling it to exploit object information, associate occlusion with corresponding objects, and make informed decisions about object manipulation. We evaluate the performance of our system both in simulated and real-world experiments using a Baxter robotic platform equipped with two arms, RGB and depth cameras. Our experimental results show that the proposed system outperforms the compared state-of-the-art methods in the given scenarios, achieving an 11.2% performance increase.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信