无碰撞冲击中静电波的非线性电子散射

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Sergei R. Kamaletdinov, Ivan Y. Vasko, Anton V. Artemyev
{"title":"无碰撞冲击中静电波的非线性电子散射","authors":"Sergei R. Kamaletdinov, Ivan Y. Vasko, Anton V. Artemyev","doi":"10.1017/s0022377824000217","DOIUrl":null,"url":null,"abstract":"<p>We present a theoretical analysis of electron pitch-angle scattering by ion-acoustic electrostatic fluctuations present in the Earth's bow shock and, presumably, collisionless shocks in general. We numerically simulate electron interaction with a single wave packet to demonstrate the scattering through phase bunching and phase trapping and quantify electron pitch-angle scattering in dependence on the wave amplitude and wave normal angle to the local magnetic field. The iterative mapping technique is used to model pitch-angle scattering of electrons by a large number of wave packets, which have been reported in the Earth's bow shock. Assuming that successive electron scatterings are not correlated, we revealed that the long-term dynamics of electrons is diffusive. The diffusion coefficient depends on the ratio <span><span><span data-mathjax-type=\"texmath\"><span>$\\varPhi _0/W$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline1.png\"/></span></span> between the wave packet amplitude and electron energy, <span><span><span data-mathjax-type=\"texmath\"><span>$D\\propto (\\varPhi _0/W)^{\\nu }$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline2.png\"/></span></span>. A quasi-linear scaling (<span><span><span data-mathjax-type=\"texmath\"><span>$\\nu \\approx 2$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline3.png\"/></span></span>) is observed for sufficiently small wave amplitudes, <span><span><span data-mathjax-type=\"texmath\"><span>$\\varPhi _0\\lesssim 10^{-3}W$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline4.png\"/></span></span>, while the diffusion is nonlinear (<span><span><span data-mathjax-type=\"texmath\"><span>$1&lt;\\nu &lt;2$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline5.png\"/></span></span>) above this threshold. We show that pitch-angle diffusion of <span><span><span data-mathjax-type=\"texmath\"><span>${\\lesssim }1$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline6.png\"/></span></span> keV electrons in the Earth's bow shock can be nonlinear. The corresponding diffusion coefficient scales with the intensity <span><span><span data-mathjax-type=\"texmath\"><span>$E_{w}^{2}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline7.png\"/></span></span> of the electrostatic fluctuations in a nonlinear fashion, <span><span><span data-mathjax-type=\"texmath\"><span>$D\\propto E_{w}^{\\nu }$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline8.png\"/></span></span> with <span><span><span data-mathjax-type=\"texmath\"><span>$\\nu &lt;2$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline9.png\"/></span></span>, while its expected values in the Earth's bow shock are <span><span><span data-mathjax-type=\"texmath\"><span>$D\\sim 0.1\\unicode{x2013}100$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline10.png\"/></span></span> <span><span><span data-mathjax-type=\"texmath\"><span>$(T_{e}/W)^{\\nu -1/2}\\,{\\rm rad}^{2}\\,{\\rm s}^{-1}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline11.png\"/></span></span>. We speculate that in the Earth's quasi-perpendicular bow shock the stochastic shock drift acceleration mechanism with pitch-angle scattering provided by the electrostatic fluctuations can contribute to the acceleration of thermal electrons up to approximately 1 keV. The potential effects of a finite perpendicular coherence scale of the wave packets on the efficiency of electron scattering are discussed.</p>","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"118 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear electron scattering by electrostatic waves in collisionless shocks\",\"authors\":\"Sergei R. Kamaletdinov, Ivan Y. Vasko, Anton V. Artemyev\",\"doi\":\"10.1017/s0022377824000217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a theoretical analysis of electron pitch-angle scattering by ion-acoustic electrostatic fluctuations present in the Earth's bow shock and, presumably, collisionless shocks in general. We numerically simulate electron interaction with a single wave packet to demonstrate the scattering through phase bunching and phase trapping and quantify electron pitch-angle scattering in dependence on the wave amplitude and wave normal angle to the local magnetic field. The iterative mapping technique is used to model pitch-angle scattering of electrons by a large number of wave packets, which have been reported in the Earth's bow shock. Assuming that successive electron scatterings are not correlated, we revealed that the long-term dynamics of electrons is diffusive. The diffusion coefficient depends on the ratio <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\varPhi _0/W$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline1.png\\\"/></span></span> between the wave packet amplitude and electron energy, <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$D\\\\propto (\\\\varPhi _0/W)^{\\\\nu }$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline2.png\\\"/></span></span>. A quasi-linear scaling (<span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\nu \\\\approx 2$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline3.png\\\"/></span></span>) is observed for sufficiently small wave amplitudes, <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\varPhi _0\\\\lesssim 10^{-3}W$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline4.png\\\"/></span></span>, while the diffusion is nonlinear (<span><span><span data-mathjax-type=\\\"texmath\\\"><span>$1&lt;\\\\nu &lt;2$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline5.png\\\"/></span></span>) above this threshold. We show that pitch-angle diffusion of <span><span><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\lesssim }1$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline6.png\\\"/></span></span> keV electrons in the Earth's bow shock can be nonlinear. The corresponding diffusion coefficient scales with the intensity <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$E_{w}^{2}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline7.png\\\"/></span></span> of the electrostatic fluctuations in a nonlinear fashion, <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$D\\\\propto E_{w}^{\\\\nu }$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline8.png\\\"/></span></span> with <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\nu &lt;2$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline9.png\\\"/></span></span>, while its expected values in the Earth's bow shock are <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$D\\\\sim 0.1\\\\unicode{x2013}100$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline10.png\\\"/></span></span> <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$(T_{e}/W)^{\\\\nu -1/2}\\\\,{\\\\rm rad}^{2}\\\\,{\\\\rm s}^{-1}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134914101-0214:S0022377824000217:S0022377824000217_inline11.png\\\"/></span></span>. We speculate that in the Earth's quasi-perpendicular bow shock the stochastic shock drift acceleration mechanism with pitch-angle scattering provided by the electrostatic fluctuations can contribute to the acceleration of thermal electrons up to approximately 1 keV. The potential effects of a finite perpendicular coherence scale of the wave packets on the efficiency of electron scattering are discussed.</p>\",\"PeriodicalId\":16846,\"journal\":{\"name\":\"Journal of Plasma Physics\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plasma Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s0022377824000217\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377824000217","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

我们对地球弓形冲击中的离子声静电波动引起的电子俯仰角散射进行了理论分析,并推测了一般的无碰撞冲击。我们对电子与单个波包的相互作用进行了数值模拟,展示了通过相位束化和相位捕获产生的散射,并量化了电子俯仰角散射与波幅和波与本地磁场法向角的关系。迭代映射技术用于模拟大量波包对电子的俯仰角散射。假设连续的电子散射不相关,我们发现电子的长期动态是扩散的。扩散系数取决于波包振幅与电子能量的比值 $\varPhi _0/W$, 即 $D\propto (\varPhi _0/W)^\{nu }$。在足够小的波幅($\varPhi _0\lesssim 10^{-3}W$)下,可以观察到准线性缩放($\nu \approx 2$),而在此阈值之上,扩散是非线性的($1<\nu <2$)。我们证明,地球弓形冲击中 ${\lesssim }1$ keV 电子的俯仰角扩散可能是非线性的。相应的扩散系数以非线性方式与静电波动强度 $E_{w}^{2}$ 成比例,即 $D\propto E_{w}^\{nu }$ 与 $\nu <2$ 成比例,而其在地弓冲击中的预期值为 $D\sim 0.1unicode{x2013}100$ $(T_{e}/W)^{\nu -1/2}\,{\rm rad}^{2}\,{\rm s}^{-1}$.我们推测,在地球的准垂直弓形冲击中,由静电波动提供的带有俯仰角散射的随机冲击漂移加速机制可以促进热电子加速到大约 1 keV。讨论了波包的有限垂直相干尺度对电子散射效率的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear electron scattering by electrostatic waves in collisionless shocks

We present a theoretical analysis of electron pitch-angle scattering by ion-acoustic electrostatic fluctuations present in the Earth's bow shock and, presumably, collisionless shocks in general. We numerically simulate electron interaction with a single wave packet to demonstrate the scattering through phase bunching and phase trapping and quantify electron pitch-angle scattering in dependence on the wave amplitude and wave normal angle to the local magnetic field. The iterative mapping technique is used to model pitch-angle scattering of electrons by a large number of wave packets, which have been reported in the Earth's bow shock. Assuming that successive electron scatterings are not correlated, we revealed that the long-term dynamics of electrons is diffusive. The diffusion coefficient depends on the ratio $\varPhi _0/W$ between the wave packet amplitude and electron energy, $D\propto (\varPhi _0/W)^{\nu }$. A quasi-linear scaling ($\nu \approx 2$) is observed for sufficiently small wave amplitudes, $\varPhi _0\lesssim 10^{-3}W$, while the diffusion is nonlinear ($1<\nu <2$) above this threshold. We show that pitch-angle diffusion of ${\lesssim }1$ keV electrons in the Earth's bow shock can be nonlinear. The corresponding diffusion coefficient scales with the intensity $E_{w}^{2}$ of the electrostatic fluctuations in a nonlinear fashion, $D\propto E_{w}^{\nu }$ with $\nu <2$, while its expected values in the Earth's bow shock are $D\sim 0.1\unicode{x2013}100$ $(T_{e}/W)^{\nu -1/2}\,{\rm rad}^{2}\,{\rm s}^{-1}$. We speculate that in the Earth's quasi-perpendicular bow shock the stochastic shock drift acceleration mechanism with pitch-angle scattering provided by the electrostatic fluctuations can contribute to the acceleration of thermal electrons up to approximately 1 keV. The potential effects of a finite perpendicular coherence scale of the wave packets on the efficiency of electron scattering are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plasma Physics
Journal of Plasma Physics 物理-物理:流体与等离子体
CiteScore
3.50
自引率
16.00%
发文量
106
审稿时长
6-12 weeks
期刊介绍: JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信