{"title":"涉及阿佩里数和类阿佩里数的一些猜想全等的证明","authors":"Guo-shuai Mao, Lilong Wang","doi":"10.1017/s0013091524000075","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we mainly prove the following conjectures of Sun [16]: Let <span>p</span> > 3 be a prime. Then<span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306144432913-0876:S0013091524000075:S0013091524000075_eqnU1.png\"><span data-mathjax-type=\"texmath\"><span>\\begin{align*}&A_{2p}\\equiv A_2-\\frac{1648}3p^3B_{p-3}\\ ({\\rm{mod}}\\ p^4),\\\\&A_{2p-1}\\equiv A_1+\\frac{16p^3}3B_{p-3}\\ ({\\rm{mod}}\\ p^4),\\\\&A_{3p}\\equiv A_3-36738p^3B_{p-3}\\ ({\\rm{mod}}\\ p^4),\\end{align*}</span></span></img></span></p><p contenttype=\"noindent\">where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306144432913-0876:S0013091524000075:S0013091524000075_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$A_n=\\sum_{k=0}^n\\binom{n}k^2\\binom{n+k}{k}^2$</span></span></img></span></span> is the <span>n</span>th Apéry number, and <span>B<span>n</span></span> is the <span>n</span>th Bernoulli number.</p>","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"8 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of some conjectural congruences involving Apéry and Apéry-like numbers\",\"authors\":\"Guo-shuai Mao, Lilong Wang\",\"doi\":\"10.1017/s0013091524000075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we mainly prove the following conjectures of Sun [16]: Let <span>p</span> > 3 be a prime. Then<span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306144432913-0876:S0013091524000075:S0013091524000075_eqnU1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>\\\\begin{align*}&A_{2p}\\\\equiv A_2-\\\\frac{1648}3p^3B_{p-3}\\\\ ({\\\\rm{mod}}\\\\ p^4),\\\\\\\\&A_{2p-1}\\\\equiv A_1+\\\\frac{16p^3}3B_{p-3}\\\\ ({\\\\rm{mod}}\\\\ p^4),\\\\\\\\&A_{3p}\\\\equiv A_3-36738p^3B_{p-3}\\\\ ({\\\\rm{mod}}\\\\ p^4),\\\\end{align*}</span></span></img></span></p><p contenttype=\\\"noindent\\\">where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306144432913-0876:S0013091524000075:S0013091524000075_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$A_n=\\\\sum_{k=0}^n\\\\binom{n}k^2\\\\binom{n+k}{k}^2$</span></span></img></span></span> is the <span>n</span>th Apéry number, and <span>B<span>n</span></span> is the <span>n</span>th Bernoulli number.</p>\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000075\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000075","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文主要证明 Sun [16] 的下列猜想:设 p > 3 是素数。Then\begin{align*}&A_{2p}\equiv A_2-\frac{1648}3p^3B_{p-3}\ ({\rm{mod}}\ p^4),\&A_{2p-1}\equiv A_1+\frac{16p^3}3B_{p-3}\ ({\rm{mod}}\ p^4),\&;A_{3p}equiv A_3-36738p^3B_{p-3}\ ({\rm{mod}\ p^4),end{align*}where $A_n=\sum_{k=0}^n\binom{n}k^2\binom{n+k}{k}^2$ is the nth Apéry number, and Bn is the nth Bernoulli number.
Proof of some conjectural congruences involving Apéry and Apéry-like numbers
In this paper, we mainly prove the following conjectures of Sun [16]: Let p > 3 be a prime. Then\begin{align*}&A_{2p}\equiv A_2-\frac{1648}3p^3B_{p-3}\ ({\rm{mod}}\ p^4),\\&A_{2p-1}\equiv A_1+\frac{16p^3}3B_{p-3}\ ({\rm{mod}}\ p^4),\\&A_{3p}\equiv A_3-36738p^3B_{p-3}\ ({\rm{mod}}\ p^4),\end{align*}
where $A_n=\sum_{k=0}^n\binom{n}k^2\binom{n+k}{k}^2$ is the nth Apéry number, and Bn is the nth Bernoulli number.
期刊介绍:
The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.