涉及阿佩里数和类阿佩里数的一些猜想全等的证明

IF 0.7 3区 数学 Q2 MATHEMATICS
Guo-shuai Mao, Lilong Wang
{"title":"涉及阿佩里数和类阿佩里数的一些猜想全等的证明","authors":"Guo-shuai Mao, Lilong Wang","doi":"10.1017/s0013091524000075","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we mainly prove the following conjectures of Sun [16]: Let <span>p</span> &gt; 3 be a prime. Then<span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306144432913-0876:S0013091524000075:S0013091524000075_eqnU1.png\"><span data-mathjax-type=\"texmath\"><span>\\begin{align*}&amp;A_{2p}\\equiv A_2-\\frac{1648}3p^3B_{p-3}\\ ({\\rm{mod}}\\ p^4),\\\\&amp;A_{2p-1}\\equiv A_1+\\frac{16p^3}3B_{p-3}\\ ({\\rm{mod}}\\ p^4),\\\\&amp;A_{3p}\\equiv A_3-36738p^3B_{p-3}\\ ({\\rm{mod}}\\ p^4),\\end{align*}</span></span></img></span></p><p contenttype=\"noindent\">where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306144432913-0876:S0013091524000075:S0013091524000075_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$A_n=\\sum_{k=0}^n\\binom{n}k^2\\binom{n+k}{k}^2$</span></span></img></span></span> is the <span>n</span>th Apéry number, and <span>B<span>n</span></span> is the <span>n</span>th Bernoulli number.</p>","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"8 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of some conjectural congruences involving Apéry and Apéry-like numbers\",\"authors\":\"Guo-shuai Mao, Lilong Wang\",\"doi\":\"10.1017/s0013091524000075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we mainly prove the following conjectures of Sun [16]: Let <span>p</span> &gt; 3 be a prime. Then<span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306144432913-0876:S0013091524000075:S0013091524000075_eqnU1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>\\\\begin{align*}&amp;A_{2p}\\\\equiv A_2-\\\\frac{1648}3p^3B_{p-3}\\\\ ({\\\\rm{mod}}\\\\ p^4),\\\\\\\\&amp;A_{2p-1}\\\\equiv A_1+\\\\frac{16p^3}3B_{p-3}\\\\ ({\\\\rm{mod}}\\\\ p^4),\\\\\\\\&amp;A_{3p}\\\\equiv A_3-36738p^3B_{p-3}\\\\ ({\\\\rm{mod}}\\\\ p^4),\\\\end{align*}</span></span></img></span></p><p contenttype=\\\"noindent\\\">where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306144432913-0876:S0013091524000075:S0013091524000075_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$A_n=\\\\sum_{k=0}^n\\\\binom{n}k^2\\\\binom{n+k}{k}^2$</span></span></img></span></span> is the <span>n</span>th Apéry number, and <span>B<span>n</span></span> is the <span>n</span>th Bernoulli number.</p>\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000075\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000075","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要证明 Sun [16] 的下列猜想:设 p > 3 是素数。Then\begin{align*}&A_{2p}\equiv A_2-\frac{1648}3p^3B_{p-3}\ ({\rm{mod}}\ p^4),\&A_{2p-1}\equiv A_1+\frac{16p^3}3B_{p-3}\ ({\rm{mod}}\ p^4),\&;A_{3p}equiv A_3-36738p^3B_{p-3}\ ({\rm{mod}\ p^4),end{align*}where $A_n=\sum_{k=0}^n\binom{n}k^2\binom{n+k}{k}^2$ is the nth Apéry number, and Bn is the nth Bernoulli number.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof of some conjectural congruences involving Apéry and Apéry-like numbers

In this paper, we mainly prove the following conjectures of Sun [16]: Let p > 3 be a prime. Then\begin{align*}&A_{2p}\equiv A_2-\frac{1648}3p^3B_{p-3}\ ({\rm{mod}}\ p^4),\\&A_{2p-1}\equiv A_1+\frac{16p^3}3B_{p-3}\ ({\rm{mod}}\ p^4),\\&A_{3p}\equiv A_3-36738p^3B_{p-3}\ ({\rm{mod}}\ p^4),\end{align*}

where $A_n=\sum_{k=0}^n\binom{n}k^2\binom{n+k}{k}^2$ is the nth Apéry number, and Bn is the nth Bernoulli number.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信