Daniel Asimov, Florian Frick, Michael Harrison, Wesley Pegden
{"title":"欧几里得空间中的单位球纤维","authors":"Daniel Asimov, Florian Frick, Michael Harrison, Wesley Pegden","doi":"10.1017/s0013091524000038","DOIUrl":null,"url":null,"abstract":"<p>We show that if an open set in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306133538207-0692:S0013091524000038:S0013091524000038_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb{R}^d$</span></span></img></span></span> can be fibered by unit <span>n</span>-spheres, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306133538207-0692:S0013091524000038:S0013091524000038_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$d \\geq 2n+1$</span></span></img></span></span>, and if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306133538207-0692:S0013091524000038:S0013091524000038_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$d = 2n+1$</span></span></img></span></span>, then the spheres must be pairwise linked, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306133538207-0692:S0013091524000038:S0013091524000038_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$n \\in \\left\\{0, 1, 3, 7 \\right\\}$</span></span></img></span></span>. For these values of <span>n</span>, we construct unit <span>n</span>-sphere fibrations in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306133538207-0692:S0013091524000038:S0013091524000038_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb{R}^{2n+1}$</span></span></img></span></span>.</p>","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"70 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unit sphere fibrations in Euclidean space\",\"authors\":\"Daniel Asimov, Florian Frick, Michael Harrison, Wesley Pegden\",\"doi\":\"10.1017/s0013091524000038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that if an open set in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306133538207-0692:S0013091524000038:S0013091524000038_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb{R}^d$</span></span></img></span></span> can be fibered by unit <span>n</span>-spheres, then <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306133538207-0692:S0013091524000038:S0013091524000038_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$d \\\\geq 2n+1$</span></span></img></span></span>, and if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306133538207-0692:S0013091524000038:S0013091524000038_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$d = 2n+1$</span></span></img></span></span>, then the spheres must be pairwise linked, and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306133538207-0692:S0013091524000038:S0013091524000038_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n \\\\in \\\\left\\\\{0, 1, 3, 7 \\\\right\\\\}$</span></span></img></span></span>. For these values of <span>n</span>, we construct unit <span>n</span>-sphere fibrations in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306133538207-0692:S0013091524000038:S0013091524000038_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb{R}^{2n+1}$</span></span></img></span></span>.</p>\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000038\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000038","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,如果$\mathbb{R}^d$中的一个开集可以被单位n球纤维化,那么$d \geq 2n+1$,如果$d = 2n+1$,那么球体必须是成对链接的,并且$n \in \left\{0,1,3,7 \right\}$。对于这些 n 值,我们在 $\mathbb{R}^{2n+1}$ 中构造单位 n 球纤维。
We show that if an open set in $\mathbb{R}^d$ can be fibered by unit n-spheres, then $d \geq 2n+1$, and if $d = 2n+1$, then the spheres must be pairwise linked, and $n \in \left\{0, 1, 3, 7 \right\}$. For these values of n, we construct unit n-sphere fibrations in $\mathbb{R}^{2n+1}$.
期刊介绍:
The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.