利用现场学习功能改造边缘硬件

Peng Yao, Bin Gao, Huaqiang Wu
{"title":"利用现场学习功能改造边缘硬件","authors":"Peng Yao, Bin Gao, Huaqiang Wu","doi":"10.1038/s44287-024-00031-y","DOIUrl":null,"url":null,"abstract":"Memristor devices have shown notable superiority in the realm of neuromorphic computing chips, particularly in artificial intelligence (AI) inference tasks. Researchers are now grappling with the intricacies of incorporating in situ learning capabilities into memristor-based chips, paving the way for more powerful edge intelligence.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 3","pages":"141-142"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming edge hardware with in situ learning features\",\"authors\":\"Peng Yao, Bin Gao, Huaqiang Wu\",\"doi\":\"10.1038/s44287-024-00031-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memristor devices have shown notable superiority in the realm of neuromorphic computing chips, particularly in artificial intelligence (AI) inference tasks. Researchers are now grappling with the intricacies of incorporating in situ learning capabilities into memristor-based chips, paving the way for more powerful edge intelligence.\",\"PeriodicalId\":501701,\"journal\":{\"name\":\"Nature Reviews Electrical Engineering\",\"volume\":\"1 3\",\"pages\":\"141-142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44287-024-00031-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44287-024-00031-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在神经形态计算芯片领域,尤其是在人工智能(AI)推理任务方面,忆阻器设备已显示出明显的优势。目前,研究人员正在研究如何将原位学习功能融入基于晶闸管的芯片,为实现更强大的边缘智能铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transforming edge hardware with in situ learning features
Memristor devices have shown notable superiority in the realm of neuromorphic computing chips, particularly in artificial intelligence (AI) inference tasks. Researchers are now grappling with the intricacies of incorporating in situ learning capabilities into memristor-based chips, paving the way for more powerful edge intelligence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信