德尔塔和 Theta 运算符扩展

IF 1.2 2区 数学 Q1 MATHEMATICS
Alessandro Iraci, Marino Romero
{"title":"德尔塔和 Theta 运算符扩展","authors":"Alessandro Iraci, Marino Romero","doi":"10.1017/fms.2024.14","DOIUrl":null,"url":null,"abstract":"<p>We give an elementary symmetric function expansion for the expressions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$M\\Delta _{m_\\gamma e_1}\\Pi e_\\lambda ^{\\ast }$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$M\\Delta _{m_\\gamma e_1}\\Pi s_\\lambda ^{\\ast }$</span></span></img></span></span> when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$t=1$</span></span></img></span></span> in terms of what we call <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\gamma $</span></span></img></span></span>-parking functions and lattice <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\gamma $</span></span></img></span></span>-parking functions. Here, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\Delta _F$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\Pi $</span></span></img></span></span> are certain eigenoperators of the modified Macdonald basis and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$M=(1-q)(1-t)$</span></span></img></span></span>. Our main results, in turn, give an elementary basis expansion at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$t=1$</span></span></img></span></span> for symmetric functions of the form <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$M \\Delta _{Fe_1} \\Theta _{G} J$</span></span></img></span></span> whenever <span>F</span> is expanded in terms of monomials, <span>G</span> is expanded in terms of the elementary basis, and <span>J</span> is expanded in terms of the modified elementary basis <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\{\\Pi e_\\lambda ^\\ast \\}_\\lambda $</span></span></img></span></span>. Even the most special cases of this general Delta and Theta operator expression are significant; we highlight a few of these special cases. We end by giving an <span>e</span>-positivity conjecture for when <span>t</span> is not specialized, proposing that our objects can also give the elementary basis expansion in the unspecialized symmetric function.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delta and Theta Operator Expansions\",\"authors\":\"Alessandro Iraci, Marino Romero\",\"doi\":\"10.1017/fms.2024.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give an elementary symmetric function expansion for the expressions <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$M\\\\Delta _{m_\\\\gamma e_1}\\\\Pi e_\\\\lambda ^{\\\\ast }$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$M\\\\Delta _{m_\\\\gamma e_1}\\\\Pi s_\\\\lambda ^{\\\\ast }$</span></span></img></span></span> when <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$t=1$</span></span></img></span></span> in terms of what we call <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\gamma $</span></span></img></span></span>-parking functions and lattice <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\gamma $</span></span></img></span></span>-parking functions. Here, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Delta _F$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Pi $</span></span></img></span></span> are certain eigenoperators of the modified Macdonald basis and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$M=(1-q)(1-t)$</span></span></img></span></span>. Our main results, in turn, give an elementary basis expansion at <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$t=1$</span></span></img></span></span> for symmetric functions of the form <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$M \\\\Delta _{Fe_1} \\\\Theta _{G} J$</span></span></img></span></span> whenever <span>F</span> is expanded in terms of monomials, <span>G</span> is expanded in terms of the elementary basis, and <span>J</span> is expanded in terms of the modified elementary basis <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240306134500664-0603:S2050509424000148:S2050509424000148_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\{\\\\Pi e_\\\\lambda ^\\\\ast \\\\}_\\\\lambda $</span></span></img></span></span>. Even the most special cases of this general Delta and Theta operator expression are significant; we highlight a few of these special cases. We end by giving an <span>e</span>-positivity conjecture for when <span>t</span> is not specialized, proposing that our objects can also give the elementary basis expansion in the unspecialized symmetric function.</p>\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.14\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.14","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

当 $t=1$ 时,我们给出了表达式 $M\Delta _{m_\gamma e_1}\Pi e_\lambda ^{\ast }$ 和 $M\Delta _{m_\gamma e_1}\Pi s_\lambda ^{\ast }$ 的基本对称函数展开,我们称之为 $\gamma $ 停车函数和晶格 $\gamma $ 停车函数。这里,$\Delta _F$ 和 $\Pi $ 是修正麦克唐纳基础的某些特征算子,$M=(1-q)(1-t)$。我们的主要结果反过来给出了对称函数形式 $M \Delta _{Fe_1} 在 $t=1$ 时的基本基展开。\Theta _{G}J$ 只要 F 是以单项式展开的,G 是以初等基展开的,J 是以修正初等基$\{Pi e_\lambda ^\ast \}_\lambda $展开的。最后,我们给出了当 t 没有特化时的 e 正性猜想,提出我们的对象也可以给出未特化对称函数的基元展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Delta and Theta Operator Expansions

We give an elementary symmetric function expansion for the expressions $M\Delta _{m_\gamma e_1}\Pi e_\lambda ^{\ast }$ and $M\Delta _{m_\gamma e_1}\Pi s_\lambda ^{\ast }$ when $t=1$ in terms of what we call $\gamma $-parking functions and lattice $\gamma $-parking functions. Here, $\Delta _F$ and $\Pi $ are certain eigenoperators of the modified Macdonald basis and $M=(1-q)(1-t)$. Our main results, in turn, give an elementary basis expansion at $t=1$ for symmetric functions of the form $M \Delta _{Fe_1} \Theta _{G} J$ whenever F is expanded in terms of monomials, G is expanded in terms of the elementary basis, and J is expanded in terms of the modified elementary basis $\{\Pi e_\lambda ^\ast \}_\lambda $. Even the most special cases of this general Delta and Theta operator expression are significant; we highlight a few of these special cases. We end by giving an e-positivity conjecture for when t is not specialized, proposing that our objects can also give the elementary basis expansion in the unspecialized symmetric function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信