使用给定周长的距离监测图形的边缘

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Chenxu Yang , Gang Yang , Sun-Yuan Hsieh , Yaping Mao , Ralf Klasing
{"title":"使用给定周长的距离监测图形的边缘","authors":"Chenxu Yang ,&nbsp;Gang Yang ,&nbsp;Sun-Yuan Hsieh ,&nbsp;Yaping Mao ,&nbsp;Ralf Klasing","doi":"10.1016/j.jcss.2024.103528","DOIUrl":null,"url":null,"abstract":"<div><p>A set <em>M</em> of vertices of a graph <em>G</em> is a <em>distance-edge-monitoring set</em> if for every edge <span><math><mi>e</mi><mo>∈</mo><mi>G</mi></math></span>, there is a vertex <span><math><mi>x</mi><mo>∈</mo><mi>M</mi></math></span> and a vertex <span><math><mi>y</mi><mo>∈</mo><mi>G</mi></math></span> such that <em>e</em> belongs to all shortest paths between <em>x</em> and <em>y</em>. We denote by <span><math><mrow><mi>dem</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> the smallest size of such a set in <em>G</em>. In this paper, we prove that <span><math><mi>dem</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>n</mi><mo>−</mo><mo>⌊</mo><mi>g</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> for any connected graph <em>G</em>, which is not a tree, of order <em>n</em>, where <span><math><mi>g</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the length of a shortest cycle in <em>G</em>, and give the graphs with <span><math><mi>dem</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mo>⌊</mo><mi>g</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span>. We also obtain that <span><math><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mi>k</mi><mo>+</mo><mo>⌊</mo><mi>g</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> for every connected graph <em>G</em> with <span><math><mrow><mi>dem</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>k</mi></math></span> and <span><math><mi>g</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>g</mi></math></span>. Furthermore, the lower bound holds if and only if <span><math><mi>g</mi><mo>=</mo><mn>3</mn></math></span> and <span><math><mi>k</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> or <span><math><mi>g</mi><mo>=</mo><mn>4</mn></math></span> and <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>. We prove that <span><math><mrow><mi>dem</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>/</mo><mn>5</mn></math></span> for <span><math><mi>g</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>5</mn></math></span>.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"143 ","pages":"Article 103528"},"PeriodicalIF":1.1000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring the edges of a graph using distances with given girth\",\"authors\":\"Chenxu Yang ,&nbsp;Gang Yang ,&nbsp;Sun-Yuan Hsieh ,&nbsp;Yaping Mao ,&nbsp;Ralf Klasing\",\"doi\":\"10.1016/j.jcss.2024.103528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A set <em>M</em> of vertices of a graph <em>G</em> is a <em>distance-edge-monitoring set</em> if for every edge <span><math><mi>e</mi><mo>∈</mo><mi>G</mi></math></span>, there is a vertex <span><math><mi>x</mi><mo>∈</mo><mi>M</mi></math></span> and a vertex <span><math><mi>y</mi><mo>∈</mo><mi>G</mi></math></span> such that <em>e</em> belongs to all shortest paths between <em>x</em> and <em>y</em>. We denote by <span><math><mrow><mi>dem</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> the smallest size of such a set in <em>G</em>. In this paper, we prove that <span><math><mi>dem</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>n</mi><mo>−</mo><mo>⌊</mo><mi>g</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> for any connected graph <em>G</em>, which is not a tree, of order <em>n</em>, where <span><math><mi>g</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the length of a shortest cycle in <em>G</em>, and give the graphs with <span><math><mi>dem</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mo>⌊</mo><mi>g</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span>. We also obtain that <span><math><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mi>k</mi><mo>+</mo><mo>⌊</mo><mi>g</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> for every connected graph <em>G</em> with <span><math><mrow><mi>dem</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>k</mi></math></span> and <span><math><mi>g</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>g</mi></math></span>. Furthermore, the lower bound holds if and only if <span><math><mi>g</mi><mo>=</mo><mn>3</mn></math></span> and <span><math><mi>k</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> or <span><math><mi>g</mi><mo>=</mo><mn>4</mn></math></span> and <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>. We prove that <span><math><mrow><mi>dem</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>/</mo><mn>5</mn></math></span> for <span><math><mi>g</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>5</mn></math></span>.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"143 \",\"pages\":\"Article 103528\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000024000230\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000024000230","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

对于一个图的顶点集和边,如果存在一个顶点,使得 或 ,则由 。如果所有边都由图 的某些顶点监控,则图 的顶点集是(简称 DEM 集)。 图 的 定义是图 的 DEM 集的最小心性。 本文中,我们证明了对于一个连通图(不是树),其阶为 ,其中 (简称 )是图 中最短循环的长度。此外,当且仅当 是一个循环或一个完整图()时,等式成立。让 是具有 DEM 数和周长的连通图类。对于任意 ,我们有 .此外,当且仅当 和 或 和 时,等式成立。 此外,存在这样一个图,它可以任意大。我们还给出了 和 之间的关系,即 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring the edges of a graph using distances with given girth

A set M of vertices of a graph G is a distance-edge-monitoring set if for every edge eG, there is a vertex xM and a vertex yG such that e belongs to all shortest paths between x and y. We denote by dem(G) the smallest size of such a set in G. In this paper, we prove that dem(G)ng(G)/2 for any connected graph G, which is not a tree, of order n, where g(G) is the length of a shortest cycle in G, and give the graphs with dem(G)=ng(G)/2. We also obtain that |V(G)|k+g(G)/2 for every connected graph G with dem(G)=k and g(G)=g. Furthermore, the lower bound holds if and only if g=3 and k=n1 or g=4 and k=2. We prove that dem(G)2n/5 for g(G)5.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信