低温多体系统的绝热演化

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Rafael L. Greenblatt, Markus Lange, Giovanna Marcelli, Marcello Porta
{"title":"低温多体系统的绝热演化","authors":"Rafael L. Greenblatt, Markus Lange, Giovanna Marcelli, Marcello Porta","doi":"10.1007/s00220-023-04903-6","DOIUrl":null,"url":null,"abstract":"<p>We consider finite-range, many-body fermionic lattice models and we study the evolution of their thermal equilibrium state after introducing a weak and slowly varying time-dependent perturbation. Under suitable assumptions on the external driving, we derive a representation for the average of the evolution of local observables via a convergent expansion in the perturbation, for small enough temperatures. Convergence holds for a range of parameters that is uniform in the size of the system. Under a spectral gap assumption on the unperturbed Hamiltonian, convergence is also uniform in temperature. As an application, our expansion allows us to prove closeness of the time-evolved state to the instantaneous Gibbs state of the perturbed system, in the sense of expectation of local observables, at zero and at small temperatures. As a corollary, we also establish the validity of linear response. Our strategy is based on a rigorous version of the Wick rotation, which allows us to represent the Duhamel expansion for the real-time dynamics in terms of Euclidean correlation functions, for which precise decay estimates are proved using fermionic cluster expansion.</p>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adiabatic Evolution of Low-Temperature Many-Body Systems\",\"authors\":\"Rafael L. Greenblatt, Markus Lange, Giovanna Marcelli, Marcello Porta\",\"doi\":\"10.1007/s00220-023-04903-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider finite-range, many-body fermionic lattice models and we study the evolution of their thermal equilibrium state after introducing a weak and slowly varying time-dependent perturbation. Under suitable assumptions on the external driving, we derive a representation for the average of the evolution of local observables via a convergent expansion in the perturbation, for small enough temperatures. Convergence holds for a range of parameters that is uniform in the size of the system. Under a spectral gap assumption on the unperturbed Hamiltonian, convergence is also uniform in temperature. As an application, our expansion allows us to prove closeness of the time-evolved state to the instantaneous Gibbs state of the perturbed system, in the sense of expectation of local observables, at zero and at small temperatures. As a corollary, we also establish the validity of linear response. Our strategy is based on a rigorous version of the Wick rotation, which allows us to represent the Duhamel expansion for the real-time dynamics in terms of Euclidean correlation functions, for which precise decay estimates are proved using fermionic cluster expansion.</p>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s00220-023-04903-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s00220-023-04903-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了有限范围、多体费米子晶格模型,并研究了它们在引入微弱且缓慢变化的随时间变化的扰动后热平衡状态的演变。在外部驱动力的适当假设下,我们推导出了在足够小的温度下,通过对扰动的收敛扩展来表示局部观测值演化的平均值。在系统大小一致的参数范围内,收敛性是成立的。在未扰动哈密顿的谱间隙假设下,收敛在温度上也是均匀的。作为一种应用,我们的扩展使我们能够证明在零温度和小温度下,时间演化状态与扰动系统的瞬时吉布斯状态在局部观测值期望意义上的接近性。作为推论,我们还建立了线性响应的有效性。我们的策略基于严格版本的威克旋转,它允许我们用欧几里得相关函数表示实时动力学的杜哈梅尔展开,并用费米子簇展开证明了精确的衰变估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adiabatic Evolution of Low-Temperature Many-Body Systems

We consider finite-range, many-body fermionic lattice models and we study the evolution of their thermal equilibrium state after introducing a weak and slowly varying time-dependent perturbation. Under suitable assumptions on the external driving, we derive a representation for the average of the evolution of local observables via a convergent expansion in the perturbation, for small enough temperatures. Convergence holds for a range of parameters that is uniform in the size of the system. Under a spectral gap assumption on the unperturbed Hamiltonian, convergence is also uniform in temperature. As an application, our expansion allows us to prove closeness of the time-evolved state to the instantaneous Gibbs state of the perturbed system, in the sense of expectation of local observables, at zero and at small temperatures. As a corollary, we also establish the validity of linear response. Our strategy is based on a rigorous version of the Wick rotation, which allows us to represent the Duhamel expansion for the real-time dynamics in terms of Euclidean correlation functions, for which precise decay estimates are proved using fermionic cluster expansion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信