C. Grasset, K. Einarsdottir, N. Catalán, L. J. Tranvik, M. Groeneveld, J. A. Hawkes, K. Attermeyer
{"title":"随着内陆水域停留时间的增加,光活性降低,同时溶解有机物成分发生变化","authors":"C. Grasset, K. Einarsdottir, N. Catalán, L. J. Tranvik, M. Groeneveld, J. A. Hawkes, K. Attermeyer","doi":"10.1029/2023GB007989","DOIUrl":null,"url":null,"abstract":"<p>Photochemical degradation of dissolved organic matter (DOM) has been the subject of numerous studies; however, its regulation along the inland water continuum is still unclear. We aimed to unravel the DOM photoreactivity and concurrent DOM compositional changes across 30 boreal aquatic ecosystems including peat waters, streams, rivers, and lakes distributed along a water residence time (WRT) gradient. Samples were subjected to a standardized exposure of simulated sunlight. We measured the apparent quantum yield (AQY), which corresponds to DOM photomineralization per photon absorbed, and the compositional change in DOM at bulk and individual compound levels in the original samples and after irradiation. AQY increased with the abundance of terrestrially derived DOM and decreased at higher WRT. Additionally, the photochemical changes in both DOM optical properties and molecular composition resembled changes along the natural boreal WRT gradient at low WRT (<3 years). Accordingly, mass spectrometry revealed that the abundance of photolabile and photoproduced molecules decreased with WRT along the boreal aquatic continuum. Our study highlights the tight link between DOM composition and DOM photodegradation. We suggest that photodegradation is an important driver of DOM composition change in waters with low WRT, where DOM is highly photoreactive.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 3","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007989","citationCount":"0","resultStr":"{\"title\":\"Decreasing Photoreactivity and Concurrent Change in Dissolved Organic Matter Composition With Increasing Inland Water Residence Time\",\"authors\":\"C. Grasset, K. Einarsdottir, N. Catalán, L. J. Tranvik, M. Groeneveld, J. A. Hawkes, K. Attermeyer\",\"doi\":\"10.1029/2023GB007989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photochemical degradation of dissolved organic matter (DOM) has been the subject of numerous studies; however, its regulation along the inland water continuum is still unclear. We aimed to unravel the DOM photoreactivity and concurrent DOM compositional changes across 30 boreal aquatic ecosystems including peat waters, streams, rivers, and lakes distributed along a water residence time (WRT) gradient. Samples were subjected to a standardized exposure of simulated sunlight. We measured the apparent quantum yield (AQY), which corresponds to DOM photomineralization per photon absorbed, and the compositional change in DOM at bulk and individual compound levels in the original samples and after irradiation. AQY increased with the abundance of terrestrially derived DOM and decreased at higher WRT. Additionally, the photochemical changes in both DOM optical properties and molecular composition resembled changes along the natural boreal WRT gradient at low WRT (<3 years). Accordingly, mass spectrometry revealed that the abundance of photolabile and photoproduced molecules decreased with WRT along the boreal aquatic continuum. Our study highlights the tight link between DOM composition and DOM photodegradation. We suggest that photodegradation is an important driver of DOM composition change in waters with low WRT, where DOM is highly photoreactive.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"38 3\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007989\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007989\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007989","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
溶解有机物(DOM)的光化学降解一直是众多研究的主题;然而,其在内陆水体连续过程中的调节作用仍不清楚。我们的目的是揭示 30 个北方水生生态系统(包括沿水停留时间(WRT)梯度分布的泥炭水、溪流、河流和湖泊)中 DOM 的光活性和同时发生的 DOM 成分变化。我们对样本进行了标准化的模拟阳光照射。我们测量了表观量子产率(AQY)(相当于每吸收一个光子所产生的 DOM 光矿化度),以及原始样本和辐照后样本中 DOM 在总量和单个化合物水平上的成分变化。AQY 随陆源 DOM 丰度的增加而增加,在 WRT 较高时则减少。此外,在低 WRT(3 年)时,DOM 光学特性和分子组成的光化学变化与沿自然北方 WRT 梯度的变化相似。因此,质谱分析表明,随着北方水生连续体的 WRT 下降,光吸收和光生成分子的丰度也随之下降。我们的研究强调了 DOM 成分与 DOM 光降解之间的密切联系。我们认为,光降解是低 WRT 水域 DOM 成分变化的一个重要驱动因素,在低 WRT 水域 DOM 具有很强的光反应活性。
Decreasing Photoreactivity and Concurrent Change in Dissolved Organic Matter Composition With Increasing Inland Water Residence Time
Photochemical degradation of dissolved organic matter (DOM) has been the subject of numerous studies; however, its regulation along the inland water continuum is still unclear. We aimed to unravel the DOM photoreactivity and concurrent DOM compositional changes across 30 boreal aquatic ecosystems including peat waters, streams, rivers, and lakes distributed along a water residence time (WRT) gradient. Samples were subjected to a standardized exposure of simulated sunlight. We measured the apparent quantum yield (AQY), which corresponds to DOM photomineralization per photon absorbed, and the compositional change in DOM at bulk and individual compound levels in the original samples and after irradiation. AQY increased with the abundance of terrestrially derived DOM and decreased at higher WRT. Additionally, the photochemical changes in both DOM optical properties and molecular composition resembled changes along the natural boreal WRT gradient at low WRT (<3 years). Accordingly, mass spectrometry revealed that the abundance of photolabile and photoproduced molecules decreased with WRT along the boreal aquatic continuum. Our study highlights the tight link between DOM composition and DOM photodegradation. We suggest that photodegradation is an important driver of DOM composition change in waters with low WRT, where DOM is highly photoreactive.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.