通过全面的木材流分析提高木材效率:方法和战略见解

IF 3.8 1区 农林科学 Q1 FORESTRY
Ruisheng Wang, Peer Haller
{"title":"通过全面的木材流分析提高木材效率:方法和战略见解","authors":"Ruisheng Wang,&nbsp;Peer Haller","doi":"10.1016/j.fecs.2024.100179","DOIUrl":null,"url":null,"abstract":"<div><p>Wood, an essential natural resource in human civilization, remains widely used despite advances in technology and material substitution. The surge in greenhouse gas emissions and environmental concerns accentuates the need for optimizing wood utilization. Material flow analysis is a powerful tool for tracking material flows and stocks, aiding resource management and environmental decision-making. However, the full extent of its methodological dimensions, particularly within the context of the wood supply chain, remains relatively unexplored. In this study, we delve into the existing literature on wood flow analysis, discussing its primary objectives, materials involved, temporal and spatial scales, data sources, units, and conversion factors. Additionally, data uncertainty, data reconciliation and crucial assumptions in material flow analysis are highlighted in this paper. Key findings reveal the significance of wood cascading and substitution effects by replacing non-wood materials, where they can reduce greenhouse gas emissions more than the natural carbon sink of forests and wood products. The immediate impact of short-term wood cascading might not be as robust as the substitution effect, with energy substitution showcasing better results than material substitution. However, it's crucial to note that these conclusions could experience significant reversal from a long-term and global perspective. Strategies for improving wood efficiency involve maximizing material use, advancing construction technologies, extending product lifespans, promoting cascade use, and optimizing energy recovery processes. The study underscores the need for standardized approaches in wood flow analysis and emphasizes the potential of wood efficiency strategies in addressing environmental challenges.</p></div>","PeriodicalId":54270,"journal":{"name":"Forest Ecosystems","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2197562024000150/pdfft?md5=cf4e5abacda2569b45c305567575c60e&pid=1-s2.0-S2197562024000150-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing wood efficiency through comprehensive wood flow analysis: Methodology and strategic insights\",\"authors\":\"Ruisheng Wang,&nbsp;Peer Haller\",\"doi\":\"10.1016/j.fecs.2024.100179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wood, an essential natural resource in human civilization, remains widely used despite advances in technology and material substitution. The surge in greenhouse gas emissions and environmental concerns accentuates the need for optimizing wood utilization. Material flow analysis is a powerful tool for tracking material flows and stocks, aiding resource management and environmental decision-making. However, the full extent of its methodological dimensions, particularly within the context of the wood supply chain, remains relatively unexplored. In this study, we delve into the existing literature on wood flow analysis, discussing its primary objectives, materials involved, temporal and spatial scales, data sources, units, and conversion factors. Additionally, data uncertainty, data reconciliation and crucial assumptions in material flow analysis are highlighted in this paper. Key findings reveal the significance of wood cascading and substitution effects by replacing non-wood materials, where they can reduce greenhouse gas emissions more than the natural carbon sink of forests and wood products. The immediate impact of short-term wood cascading might not be as robust as the substitution effect, with energy substitution showcasing better results than material substitution. However, it's crucial to note that these conclusions could experience significant reversal from a long-term and global perspective. Strategies for improving wood efficiency involve maximizing material use, advancing construction technologies, extending product lifespans, promoting cascade use, and optimizing energy recovery processes. The study underscores the need for standardized approaches in wood flow analysis and emphasizes the potential of wood efficiency strategies in addressing environmental challenges.</p></div>\",\"PeriodicalId\":54270,\"journal\":{\"name\":\"Forest Ecosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2197562024000150/pdfft?md5=cf4e5abacda2569b45c305567575c60e&pid=1-s2.0-S2197562024000150-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Ecosystems\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2197562024000150\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecosystems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2197562024000150","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

木材是人类文明中不可或缺的自然资源,尽管技术在进步,材料在替代,但木材仍被广泛使用。温室气体排放的激增和对环境的担忧,凸显了优化木材利用的必要性。物料流分析是跟踪物料流和存量的有力工具,有助于资源管理和环境决策。然而,其方法论层面的全部内容,尤其是在木材供应链中的应用,仍相对欠缺。在本研究中,我们将深入探讨木材流分析的现有文献,讨论其主要目标、涉及的材料、时间和空间尺度、数据来源、单位和转换因子。此外,本文还强调了数据的不确定性、数据协调以及材料流分析中的关键假设。主要研究结果揭示了通过替代非木材材料产生的木材级联效应和替代效应的重要意义,它们比森林和木制品的天然碳汇更能减少温室气体排放。短期木材级联效应的直接影响可能不如替代效应那么强烈,能源替代比材料替代的效果更好。然而,必须指出的是,从长期和全球角度来看,这些结论可能会发生重大逆转。提高木材利用率的策略包括:最大限度地利用材料、推进建筑技术、延长产品寿命、促进级联使用以及优化能源回收流程。该研究强调了木材流分析标准化方法的必要性,并强调了木材效率战略在应对环境挑战方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing wood efficiency through comprehensive wood flow analysis: Methodology and strategic insights

Wood, an essential natural resource in human civilization, remains widely used despite advances in technology and material substitution. The surge in greenhouse gas emissions and environmental concerns accentuates the need for optimizing wood utilization. Material flow analysis is a powerful tool for tracking material flows and stocks, aiding resource management and environmental decision-making. However, the full extent of its methodological dimensions, particularly within the context of the wood supply chain, remains relatively unexplored. In this study, we delve into the existing literature on wood flow analysis, discussing its primary objectives, materials involved, temporal and spatial scales, data sources, units, and conversion factors. Additionally, data uncertainty, data reconciliation and crucial assumptions in material flow analysis are highlighted in this paper. Key findings reveal the significance of wood cascading and substitution effects by replacing non-wood materials, where they can reduce greenhouse gas emissions more than the natural carbon sink of forests and wood products. The immediate impact of short-term wood cascading might not be as robust as the substitution effect, with energy substitution showcasing better results than material substitution. However, it's crucial to note that these conclusions could experience significant reversal from a long-term and global perspective. Strategies for improving wood efficiency involve maximizing material use, advancing construction technologies, extending product lifespans, promoting cascade use, and optimizing energy recovery processes. The study underscores the need for standardized approaches in wood flow analysis and emphasizes the potential of wood efficiency strategies in addressing environmental challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forest Ecosystems
Forest Ecosystems Environmental Science-Nature and Landscape Conservation
CiteScore
7.10
自引率
4.90%
发文量
1115
审稿时长
22 days
期刊介绍: Forest Ecosystems is an open access, peer-reviewed journal publishing scientific communications from any discipline that can provide interesting contributions about the structure and dynamics of "natural" and "domesticated" forest ecosystems, and their services to people. The journal welcomes innovative science as well as application oriented work that will enhance understanding of woody plant communities. Very specific studies are welcome if they are part of a thematic series that provides some holistic perspective that is of general interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信